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THEORY OF LASER-STIMULATED SURFACE PROCESSES

Thomas F. Georget, Jui-teng Lin*, A. C. Berit and William C. Murphyt

tDepartment of Chemistry, University of Rochester

Rochester, New York 14627

*Laser Physics Branch, Optical Sciences Division, Naval Research Laboratory

Washington, D.C. 20375

Abstract

Theoretical techniques for describing laser-stimulated surface processes in
a vacuum and at a gas-surface interface are presented. For adspecies-surface
systems, the laser excitation of vibrational degrees of freedom is considered,
and quantum-mechanical and classical models and also an "almost first-prin-
ciples" treatment of the competition between multiphoton absorption and multi-
phonon relaxation are discussed. The laser excitation of electronic degrees
of freedom is considered with respect to surface states of semiconductors and
metals, for the predissociation of diatomic adspecies on metal substrates,
for ionization, and for resonance fluorescence of a gaseous atom near a met-
al. In connection with gas-surface interactions, the influence of laser ra-
diation on diffraction patterns and energy transfer in atom-surface scattering
is explored. Collisional ionization and ion neutralization in the presence
of laser radiation are discussed. The roles of partial pressure and surface
coverage in laser-stimulated surface processes are analyzed. Finally, some
ideas on surface waves and annealing are presented.
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Abbreviations

AS Adspecies-Surface
CCGM Cabrera-Celli-Goodman-Manson
CW Continuous Wave
FBZ First Brillouin Zone
FWHM Full Width at Half Maximum
GLE Generalized Langevin Equation
HMP Heisenberg-Markoff Picture
IR Infrared
IVR Intramolecular Vibrational Relaxation
LEPS London-Eyring-Polanyi-Sato
LSSP Laser-Stimulated Surface Processes
NFE Nearly-Free Electron
OBE Optical Bloch Equations
RLV Reciprocal Lattice Vector
INA Rotating-Wave Approximation
SBE Surface Bloch Equations
SERS Surface-Enhanced Raman Scattering
SHF Surface Magnetic Field
SW Surface Wave
UV Ultraviolet
ID One-Dimensional
2D Two-Dimensional
3D Three-Dimensional

1. Introduction

While the field of laser-induced chemical and physical processes in the gas
1-5

phase can now be regarded as well established, the situation with respect to

condensed phases, particularly interfaces, is still in its early stages.1 However,

a number of pioneering experiments and theoretical developments have indicated

that laser-induced molecular rate processes at a solid surface or at gas-solid or

* liquid-solid interfaces contain a wealth of new and exciting phenomena. The most

visible use of lasers in this regard has come from experiments which suggest new

processes in microelectronics.6 Lasers have been demonstrated to be efficient in

the annealing of semiconductors 7 and in stimulating deposition and etching on the

dimensions of a micrometer. 8 - 10  Since the basic mechanisms underlying the obser-
vations of the experiments on deposition and etching are associated with molecular

dynamics, including energy transfer and reactions, this represents a frontier in
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the general area of laser-induced chemistry and physics as well as in micro-

electronics.

Perhaps the first type of dynamical process to be seriously considered in a

laser-surface experiment was desorption.11-15 While the laser is generally

believed to stimulate desorption through heating effects, it is possible that

selective, nonthermal mechanisms play an important role in some instances, which

will be explored further in this article. Experimental work has also been carried

out in connection with laser-stimulated migration, decomposition and chemical

reactions. 16-20

Theoretical developments of laser-stimulated surface processes (LSSP) have
! 21-27
occurred at Rochester and elsewhere. In this review article we shall focus

on our own theoretical work at Rochester, touching on other work as it might re-

late to ours. Our work so far has considered dynamical rate processes where the

laser plays the role of a stimulator rather than a probe. We shall therefore be

ignoring a host of spectroscopic processes which generally give information on the

static properties of surface systems. We include in such processes surface-

enhanced Raman scattering (SERS), although one should bear in mind that some of

the mechanisms responsible for SERS may play a role in LSSP.2 5 ,28 We should also

emphasize that our theoretical analyses always assume the stimulator to be laser

radiation, rather than an incoherent source such as electrons or ions. However,

mich of our formalism would be readily applicable to processes resembling LSSP,

such as electron-stimulated desorption.

A review of our work on LSSP was written about three years ago,2 9 and this

present review article will incorporate aspects of that review with our progress

made during the past three years. We shall restrict ourselves to surface

processes occurring either in a vacuum or at a gas-solid interface. Our presen-

tation is organized as follows: In Sec. 2 we consider adspecies-surface systems,

first discussing the excitation of vibrational degrees of freedom by IR laser

radiation. We develop both quantum-mechanical and classical models and also an

"almost first-principles" treatment to describe the competition and interplay

between multiphoton absorption and multiphonon relaxation. We then explore how

laser-excited vibrations can lead to desorption and migration. Proceeding to the

*" excitation of electronic degrees of freedom by near-IR, visible or UV laser radia-

tion, we analyze how the promotion of electrons into surface states in semiconduc-

tors and metals can enhance the charge distribution at the surface, leading to

desorption or other dynamical processes. We then present a semiclassical theory

of laser-induced predissociation of a diatomic adspecies on a metal, where we

include the effects of the surface magnetic field along with the phonon

"continuum". We also look at laser-induced ionization of an adspecies and
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competing roles of thermionic and photoelectric effects. Finally, we examine

resonance fluorescence of an atom near a metal surface.

In Sec. 3 we turn to gas-surface interactions, considering first the influence

of laser radiation on the diffraction patterns of atoms scattering off a surface,

and then treating the energy transfer between an atom and a surface as mediated by

the laser excitation of a surface phonon. We present models of both collisional

ionization and ion neutralization at a surface as influenced by laser radiation,

where the latter is an extension of the discussion in Sec. 2 on the laser excita-

tion of electronic surface states. The roles of partial pressure and surface

coverage in LSSP are also analyzed. We end the review article with some ideas

associated with surface waves and annealing.

2. Adspecies-Surface Systems

Laser photochemistry has the unique capability of providing us the means to

very selectively control chemical reactions. In particular, in conjunction with a

solid surface, catalytic reactions can be channeled along specific pathways by

utilizing the coherence and monochromaticity of laser radiation to resonantly (or

quasiresonantly) excite specific degrees of freedom while leaving others unaffect-

ed. In Fig. 1 we present a variety of situations which illustrate selective LSSP,

each briefly described in the caption.

Each figure represents the degree of freedom selectively chosen by the laser

frequency which we call the active, A, mode. Other degrees of freedom will be

involved in the chemical process alt c as direct competitors for the laser energy

or indirectly as an 0nergy sink, and are referred to as bath, B, modes. The over-

all energy 1- . r car be described in terms of the couplings between the laser

field, the A made and the 3 modes.

The processes in Fig. 1 can be classified as involving vibrational and/or

electronic degrees of freedom. The former include IR LSSP and form the subject of

Sec. 2.A, while the latter includes visible or UV LSSP and are treated in Sec. 2.B.

A. Vibrational doroee of freedom

For processes involving vibrational degrees of freedom of the adspecies-surface

system one needs laser radiation in the infrared range. The overall dynamics

consists of resonant or near-resonant absorption of laser photons by IR-active

modes of the system and relaxation to other available channels, leading to exci-

tation, desorption, migration and subsequent chemical reactions. We begin by

discussing the general process of excitation accompanied by relaxation from a

quantum and classical model point of view, as well as from a first-principles



* * LASER
PHOTONS

ITANCE FROM SURFACI

(A)



A.B

EA



I~ +'

SUBSTRATE

U I



E8

Fig. 1. Schematic representations of a potpourri of laser-stimulated surface
processes. The energy E of the adspecies-solid system is shown along the vert-
ical axes as a function of distance from the surface in (A)-(E) & (G) and as a
function of position along the surface in (F.
(A) A typical case of molecular adsorption. The shallow well admits a pre-
cursor physisorbed state, with the molecule retaining its original identity.
The deeper well corresponds to chemisorption with major chemical changes inI structure and bonding. Possible selective excitations by laser photons are
suggested.
(B) A case of desorption. Resonant adsorption of one laser photon is followed
by passage to the continuum C of the adspecies-surface potential by another
photon.
(C) Dissociative adsorption. This is a specific case of (A) for a diatomic
species AB.* Laser pumping of the internal modes of AB or the adsorptive bond
in the physisorbed state P promotes penetration of the barrier to the chem-
isorbed state C, where the system can be stabilized by energy transfer to vi-
brational or electronic degrees of freedom of the solid. Note that in the chem-
isorbed state the adapec ie looks more like individual atoms than a diatomic mole-
cule.
(D) Rotational excitation of an adapecies. While rotation is often hindered by
adsorption, certain situations allow high rotational excitations.
MB The intense surface magnetic field at a metal surface can break the spin

degeneracy of the electronic states of an adapecies. Here the upper triplet
state of H2 is split into three states labeled 2, 3 and 4. The ground singlet
and its " photon-dressd m representation are labeled I and 1'. The avoided
crossings generated by the intersections of 1' with 2, 3 and 4 lead to enhance-
ment of the predissociation rate relative to the laser-induced gas-phase rate.
(F) Selective migration on a surface. For the case of different barriers to
migration IA.> along the surface, migration rates can be selectively enhanced
in the x- or y-airection by a judicious choice of radiation frequency.
(G) Laser-induced curve switching leading to adsorption. Transition from an
initial unbound state i by stimulated emission to a bound state n is followed
by a phonon-stimulatod (stabilizing) transition to a lower bound state f.

...S
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purely quantum viewpoint in Sec. 2.A.i. The models developed are used in a de-

scription of the dynamics of adsorption and migration in Sec. 2.A.ii.

(i) Excitation and relaxation with multiphoton-multiphonon effects.

(a) Quantum-mechanical models. We first study the dynamics of excitation and re-

laxation of an adspecies-surface system by means of quantum-mechanical models in

which microscopic Hamiltonians for both single-phonon relaxation and multiphonon
29-31

relaxation are investigated within the Heisenberg picture. The photon energy

population is studied via a master equation. The selective nature of laser-stim-

ulated surface processes is studied numerically for a multilevel system within the

Schrodinger picture. 32 ,3 3 Finally, the isotopic separation of adsorbed species is

studied via the Heisenberg equation of motion. 
34,35

Laser excitation with single-phonon relaxation. Consider a heterogeneous system

of atoms or molecules adsorbed on a uniform solid surface and subjected to

infrared laser radiation. The vibrational degrees of freedom of the adspecies-

surface system can be divided into two groups, namely, the pump-mode (resonant

infrared-active vibrational mode of the selectively drivenadspecies) and the

bath-mode (all other modes including adspecies inactive modes and the surface

phonon modes). The radiation feeds energy into the pump-mode, and the heat bath

j provides a relaxation mechanism. The microscopic model Hamiltonian describing

this relaxation dynamics can be written in the following second-quantized

form. 
2 9 - 3 1

H = HA + HB + HAB + H'(t) , (2.1a)

++
HA =W 

a a + (a t (+a) p  (2.1b)
A A p=3 P

H B wbIb. (2.1c)

IK + b t (2.1d)
H = .a b+Kjabj

HA I -v W)(a t+a) (2.1e)

v(t) - (2im Aw A)- ' (0)E cos(e) cos(0t). (2.1f)

HA and HB are the unperturbed Hamiltonian (vibrational energy) of the pump-mode

and the bath-mode respectively; HAB is the interaction Hamiltonian coupling the

pump-mode and the bath-mode; and H' (t) is the adspecies-field effective inter-

action Hamiltonian. The operators a ,a and b ,b are the usual harmonic vibra-

tional ladder operators (with fundamental frequencies wA and w ) of the pump-mode

and the bath-mode respectively. Bp is the anharmonicity of the nonlinear quantum
b !p
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oscillator (pump-mode); l'(0) is the derivative of the effective dipole moment of

the pump-mode evaluated at the equilibrium point; E is the electric field of the

radiation with frequency w, linearly polarized at an angle e with respect to the
effective dipole moment; and mA is the reduced mass associated with the active

mode. In Eq. (2.1d), K) represents the coupling between the active mode and the

ith bath mode.

The equation of motion for an operator 0(t) in the Heisenberg picture,

O(t) = exp(it/ti) Oexp(-iHt/^t) , (2.2)

where the time-independent operator 0 is defined in the Schrodinger picture, is

d(t f _i (t),H] (2.3)
dt i4

Employing the operator algebra
36

[a(t),H] - all/aat) W (2.4a)

[b(t),H] = 3H/ab (t) , (2.4b)

We obtain the following set of coupled equations:

a(t) = iW a(t) - i K.b.(t) -iv(t) , (2.5a)
eff 3 3

b.(t) = -iw.b.(t) -iKb. (t) (2.5b)
- 3)J J J

where Weff is the effective frequency obtained by the contact transformation,30

including anharmonicity up to fourth order, Eq. (2.1b),

Weff(t) = WA-2c*a (t)a(t) (2.6a)

* 2
=3063/wA -6 64 (2.6b)

We solve for the phonon operators b.(t) by formally integrating Eq. (2.5b) to3
obtain

bj(t) = b.(0) exp(-iw. t) -iKjf dt' a(t') exp[-iw .(t-t')]. (2.7)

Substituting Eq. (2.7)in Eq. (2.5a), we get

a(t) - -iW eff(t)a(t) + A (t) + A 2(t) - iV Cos (Wt) (2.8a)

where

A 1t) - -i. Kbl0)exp(-iwjt) (2.8b)

t

A2 (t) , - [IKj 12d a(t-T)exp(-iw.11 , (2.8c)

J0

I -u
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v- (24m Aw A ' (0) E cos(O) (2.8d)

Note that A (t) contains the kernel ftnction which will be investigated by the

following two techniques.

We first use a Markoff approximation in which the characteristic time of the

phonon operators is much smaller than the time over which significant phase and
36

amplitude modulation of a(t) take place. Hence we may use the phonon-free

solution of Eq. (2.8a), a(t-T) = a(t)exp(-iWAT), to evaluate the integral A 2(t),

extending the upper limit t to ,

A2 (t) - a(t)J dT I i1 2 exp~i(wA-wj)T] -- (y1 /2+i6w) a(t) , (2.9)

where the damping factor, y1 , and the frequency shift, 6w, are given by

Y1 21T2I K(wA) 120( A) # (2.10a)

6w P=[ IKjI2/(WAwj)] , (2.10b)

where P stands for "principal part." In deriving Eq. (2.10), we assumed a

continuum spectrum for the phonon modes with a density of states p. Note that

both K and p are evaluated at the active mode frequency wA since

rdTexp[i(..A-i)T] = 76(WA-W j) + iP[/(WA-wj (2.11)
0

For an alternate method to decouple the many-mode equations of motion, we can

evaluate A2 (t) by assuming a continuum phonon spectrum, without using a Markoff

approximation, to obtain

A 2(t)" 0 dT a(t-T)0 dw jK(W 1)12p(W J).xp"i(WA_ j)T] .(2.12)

This yields the same result as Eq. (9) if we assume that IK(w)12P(Wj)

IK(W A ) 1
2p(WA), i.e., a slowly varying function of W peaked at w JA" This can be

easily seen by recalling that

fdw i exp~i(WA-Wj)T] I 5 (T) + iP(I/T) (2.13)

Substituting Eq. (2.9) into Eq. (2.8a) we obtain the decoupled equation

7T - 0-p-f
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alt) = -i(Weff+6w-iy1 /2)a(t) + Allt) - iV cos(wt) (2.14)

The effects of the phonon modes have thus been incorporated into a damping factor,

1, and a frequency shift, 6w, of the active mode. There are some other alternate

techniques to treat the multimode phonon effects, e.g., the Wigner-Weisskoff

single-pole approximation which we shall discuss later when dealing with

multiphonon relaxation processes.

We now calculate the ensemble-averaged excitation of the active mode,

<n(t)> 7 <<a (t)a(t)>>, where <<...>> denotes an ensemble average over the phonon

(bath) modes and the active mode coordinate. In order to use the rotating-wave

approximation (RWA), i.e., neglecting highly oscillating terms [exp(±2iwt)], we

transform the operator into a rotating frame defined by

<a(t)> = <a(t)> exp(iwt) , (2.15)

which, combined with a "white noise" assumption for the phonon modes, <A (t)>=O,

transforms Eq. (2.14) into

<a(t)> - i(-2E*<a (t'a(t)>) + yi/2] <a(t)>-iV/2 , (2.16a)
%1

<n() = -(iV/2)<<a (t)-a(t)>>-y1 (<n(t)>-n) , (2.16b)

where A wA + 6-w is the detuning and where n is the steady-state occupation

numbei given by the Bose function

-1I n = (exp(iAA/kT]-l) (2.16c)

The above equations are coupled via the anharmonic term 2e*<a (t)a(t)> and cannot

be solved analytically. However, for low excitation, we may ignore the anharmon-

icity and solve Eq. (2.16) to obtain the average excitation for the harmonic case

with E *0,

A+(/2) 2-r1t - /2n _lj(.7<n(t)> (V/2)2 2e cos(At) + 1-e

In this case the steady-state excitation is linearly proportional to the laser

intensity (or (V) 2) and is characterized by a Lorentzian with FWHMmy I. For t&O,

the transient excitation oscillates between the two exponential curves ll+exp

(-71/2)) and [1-exp(-71/2)). For 7lO, <n(t)>csin 2(At/2)/ 2 which has the same

functional form as that of the excited-state population for a two-level system

obtained from perturbation theory. For high excitations, the average excitation

requires numerical integration due to the nonlinear coupling 2E*<a (t)a(t)>.

However, the steady-state excitation X-<n(t)> is given by a cubic equation8.S.
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AIX = , (2.18)
(A-2E*X)2+(y 1/2)2

where A - (q/2mAwA) (V/2')(8/c) and I is the laser intensity I - E 2/(87/c) in

cgs units.

So far we have discussed only the situation where the damping, or level width

of the excitation is governed by the so-called T (energy) relaxation rate, y1. To

include the effects of T2 (phase) relaxation on the excitation, we investigate the

ensemble average (over the phonon bath coordinate.) equation of motion for the

active mode operator, 0(t)-a(t) or a (t)a(t), in the Heisenberg-Markoff picture

(HMP),36

d6t> (Y /2 ^ It) a(t)a^(t) (t) L
- a (t)] dO

1t) 26 (t
+ a, +y n - 6 -/ (2.19)

a (t)]> aa(t)aa t) 2

The last term involving the dephasing (T2 processes) is characterized by the

dephasing-induced broadening factor y2 as follows:

\ (Y2 K[a (t)a(t,O(t)la tWaft) - at(t)a t)[a (t)a(t),O(t)]) (2.20)

which is mathematically constructed such that, for O(t)-a(t) and a (t)a(t),

at 2 - y2a(t) (t )a(t)2) 0 (2.21)

This assures that the T2 dephasing changes only the phase of the active mode

without changing its vibrational energy. By analogy with the above phenomena, in

collisional phenomena the T1 and T2 relaxation correspond to inelastic and elastic

scattering, respectively, and the overall collisional broadening is then given by

Y1+Y2

By using Eq. (19) and RWA, the ensemble-averaged equations of motion in HMP are

found to be

<i(t)>-- [i(A-2E*<a (t)a(t)>)+ (y 1 +y 2 )/2] <a(t)>-iV/2 , (2.22a)

<h(t)> - (iV/2) <<i (t)-a(t)>> - y1(<n(t)>-n) , (2.22b)

which are different from Eq. (2.16) by the total broadening (y1+Y2 ) in Eq. (2.22a).

For the harmonic case, E*-0, the exact solution for the average excitation is
35

i ' " '~~- - - . .. -; ) - - - -
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2 - _2 I t e e o s+( l -e ( 2 .2 3 a )

L(A) - (V/2fi)2 / A2 (+/2) 21, (2.23b)

r± =Y 1 y 2 , (2.23c)

which reduces to Eq. (2.17) for y2-O as it should. For fast dephasing y2>>Yi  ,

Eq. (2.23) becomes

=- L(1)Y 2/Y 11 +2e2cos(t I + n~i-el} (2.24)

The transient excitation profiles of Eq. (2.23) and (2.24) are shown in Figs.

2(A) and (B), respectively. We see that the excitation profile for the y2-0 case

is quite different from the y 1 O case.

SpP

Fig. 2. Excitation profiles in (Y11t,<n(t)>) space for (A,V) - (5,5) and the
ratio Y2/Y1 - (A)O and (B) 10. The values of the points P1 and P2 are (0.05,0,0)
and (4.25,6,X), respectively, where X is the steady-state excitation.

For high excitations with C*0O, the coupled equations can only be solved numer-

ically, and the results for the transient average excitations are shown in Fig. 3.

We note that the saturation of the average excitation is due to the energy relax-

ation a ,s well as the anharmonicity of the active mode. 29  In order to reach high

excitation, one requires a higher pumping rate compared to the energy relaxation

rate. We shall come back to this feature when we discuss the selectivity of these

processes.

The steady-state average excitation, X, for a cold surface (i.e., n negligible)

can be easily found by setting a(t)-<A(t)>-0 in Eq. (2.22), which gives the cubic

equation



15

(V/2) 2 U + /Y 1

(A-2e2X)2  2 (2.25)
(A2*)+(r /2)

/
i

/

IC

20

I¢

0 O.5 .6 7.0 7.5 8.0

SFig. 3. The average excitation as a function oftm ihY2-10 m1ad-0

of tim wit o_-Ian_1-

W/cm2. The solid-dashed curve represents C*-A-O and lifetime T=7 1-10-4 sec.
The solid curves correspond to c*-2 cm- 1 and A-24.9 cu - 1 for (A) lossless system
with very long lifetime, (B) T_10 - 3 sec, (C) T-1.5 x 10 - 4 sec, (D) T-1.2 x 10- 4

4

sec, ME T-10-4 sec, and (F) T-9.5 x 10-5 sec.

The optimal detuninq then occurs at the maximum (d/dA - 0) and is given by A*

2C*X* (note - the single asterisk which was already attached to C does not signify

an optimal condition as it does for A and X). At the other extreme where dX/dA-0,

we obtain a quadratic equation for the detuning, whose two roots correspond to a

"bistability" in X as a function of A. By equating the two roots, we obtain the
critical pumping rate jV*12 _Y r+2/(2c ) , implying that the existence of the

1 +

bistability is a consequence of the condition V > V*. For a fixed laser intensity,

which in proportional to V 2 (or the pumping rate), the bistability criterion may

also be stated in terms of the anharmonicity as E* > ** - (Y 1/2)(r +/M. This

"bistability" feature of the steady-state excitation is shown in Fig. 4. rt is

seen that when the anharmonicity E* is larger than the critical value, E**, the

excitation profile shows the bistable transition from P to Q as the detuning

S increases, and from R to S as the detuning decreases. We note that the maximum
S excitation is red-shifted to A* > 0, which is a general property of any nonlinear
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oscillator with C* > 0. A classical analogy of this nonlinear quantum oscillator

has been known for some time.
37

4

2

0

-20 -10 0 10 20

DETUNING A(ck)

Fig. 4. Anharmonic steady-state excitations showing the bistability feature for
(y1 ,y2 ,V) = (4,4,10) and (A) at the critical value of E* = =** - 1.28 and (B)
above the critical value, C* = 2.56 > E**. The bistable points are shown by P, Q,
R, and S. The harmonic steady-state excitation (dotted curve) is a Lorentzian. 34

Laser excitation with multiphonon relaxation. We have derived the single phonon

relaxation rate given by Eq. (2.10) which is proportional to the coupling strength

and the phonon density of states, both evaluated at the-active mode frequency, a

result of integration over a delta function, Eq. (2.11). It is easy to see that

if WA>wj the single phonon rate is zero and the only contribution to the energy

relaxation is that due to multiphonon coupling. This is not strictly true if one

includes the finite lifetime of the phonon mode due to intramode anharmonic

coupling. Mathematically, this implies that the delta function in Eq. (2.11)

should be replaced by a Lorentzian with FWHM-2y3, where yB is the phonon decay

rate. The corrected single-phonon relaxation rate including the effects of finite

phonon lifetime is then found to be

- dwIK(wj)I 2P(Wj!fd e~-%~~ 2] T
0 fd0 "x i( -A-B

-a l( i -2p( HyB/2/ WjA)2+(yB/2)2, (2.26)

where e is the real part. The rate, 61, is significant even if _W does not

WA j
exceed y B by an order of magnitude. Therefore the finite-lifetime phonon always



17

gives a large single-phonon rate even for a system with frequency spectrum w >w.

while the infinite-lifetime model (yB-0) gives a zero single-phonon rate. Howeve,

for an IR active adspecies-surface system the active mode frequency usually is

much higher than that of the phonon modes, i.e., we have the situation (W A-W )>>yB

(e.g., for CO/Ni WA 10 00 cm -1 W.300 cm-1 and y -50 cm- ) which results in a very

small single phonon rate. For systems with a big energy gap between the active

and phonon modes we shall go beyond the single-phonon relaxation model and study

the multiphonon rate.

The microscopic Hamiltonian describing an adspecies surface system with 4A >>w

subjected to infrared radiation accompanied by multiphonon relaxation may be ex-
31

pressed as

H - HA + HB + HAB + H'(t) , (2.27)

which is the same as that of the single phonon except that the interaction

Hamiltonian HAB describing multiphonon relaxation is now given by

2B ')Nf ... 1333 3 -j .1
SABji J 2" jN u '2'' j N j 2 N +2 N 1 b 

2
"  J N Ja]

- (GVBVa + fGvB a) , (2.28)
V

where we define a multiphonon operator

AV --. j . b - b. b (2.29)

and G is the coupling strength. It is seen that HAB reduces to Eq. (2.1d) and

describes single phonon relaxation when N-1 and G -K.. The Heisenberg equations

of motion are

i(t) - i[eff (t)+w(t)]a(t) - I 7 GVB (t) - iV cos(wt), (2.30a)

i (t) - -iQ B (t)-iN G*a(t) , (2.30b)
V VV V V

where JN

S - [B (t)1HB ]  1 , (2.31a)

NV - [B (t),HAB' 1 1 (B(t)BV(t)-B_(t)BV(t)), (2.31b)

and w(t) is a stochastic frequency modulation which accounts for dephasing effects.

s ... >
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By employing the Markoff approximation as used in the single phonon case, Eq.

(2.30) is decoupled and results in the ensemble-averaged equations of motion in

the HMP
31'36

<a(t)> -- [i(A-2C*<a (t)a(t)>) + (YI+Y 2 )/2]<a(t)>-iv/2 , (2.32a)

<i(t)> = -(iV/2)<<a (t)-(t)>> - Y1 (<n(t)>-N) , (2.32b)

which have the same structure as that for the single phonon case [Eq. (2.22))

except that here the multiphonon equilibrium occupation N = IT. and the relax-

ation factor is given by,

Y1 2 [ IGVI2Nv6(WAv) , (2.33a)

where
JN JN

N= 1 (n.+l) - f1 n. (2.33b)JV JJ

In deriving Eq. (2.33), the phonon-induced frequency shift is neglected and we

assume that the stochastic frequency obeys the simple correlation <o(t) 3(t')> =

Y26 (t-t'). We note that the significant difference between single-phonon and

multiphonon processes lies in the nature of the relaxation factor, y1, which is
temperature independent [Eq. (2.10)] for single-phonon relaxation but is

strongly temperature dependent for multiphonon relaxation. For example, for an

Einstein spectrum with P(w.3)=6(j-wE ) and Q=PwE (p-phonon processes), we find
that

= 2T IG(w 12 l eXp(p LE/kTjl (2.34)

Multiphonon processes with a multimode laser. In the previous discussion clas-

sical single-mode laser radiation was considered. We now investigate the effects

of a multimode laser with finite bandwidth y0 on the average excitation of the

active mode, <n(t)>, by means of a second-quantized laser field such that, instead

of Eq. (2.1e), we have

H' -h I Vk(ck+ck) , (2.35)
k

where ck and ck are the harmonic ladder operators for the k-th mode of the

quantized field and Vk is proportional to the electric field due to radiation and

may be referred to as the Rabi frequency of the excitation. The Heisenberg

equations of motion, previously given by, Eq. (2.30), now become

.7-M
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a(t) -iW ff (t) a(t) i G B V(t) i kc ( j~t) (2.36)
V k

B (t) V B i V (t) - iN GV a(t), (2.37)

c (t) - -wkck(t)-iVka(t). (2.38)

The above coupled equations can be solved by using the Markoff approximation to

include the many-body effects due to the phonon modes and the laser modes as

developed in the previous sections. Here we shall present an alternative

technique.

Taking the Laplace transform of Eq. (2.35), we get

a(s) -U(s)a(s) + I V (s)B (S) + IWk(s)ck(s) ,(2.39)

V k

where a(s), B V(s) and c k(s) are the Laplace transforms of a(t), B V t) and c kCt),

respectively, and

U(S) = siwA+ f 1(s)+f s)(S) (2.40)

Vk (S) -iG I(s+i)S+iwA + fl(s) + f2 (s)]} (2.41)

fks 2 (Si Vk ((~w~~w 1 ( S+ f() J (2.42b)

Employing the Wigner-Weisskopf single-pole approximation, i.e., szO in Eq. (2.39),

we obtain the inverse Laplace transforms of Eqs. (2.40)-(2.42) leading to

a(t) - U(t)a(0) + I 'V,(t)BV(O) + IWk(t)ck(0) (2.44)
V k

which readily gives us the average excitation

<n >- «<a t(t)a(t) >

_IU(t) i2 (0) + I I1 V(t)12 + + 11 (12<<±
V V V kk (cko>

(G + -rt -e-t/2 T_

V 2+(r/2) 2csAVt jJO
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+ V ~(~.. jr+.rt 2e r/Cos (Akt]) ko (0 (2.45)

where n(O), nj(0) and n k(0) are the initial occupation numbers of the active,

phonon and photon modes, respectively, defined by a Bose function with the same

temperature but at a different frequency. The detunings are defined by A V A-'

and A k=A-wk, where SV is the multiphonon frequency and wk is the k-th mode laser

frequency. Finally -y1+y0 is the total damping factor describing the effects of

the parallel nonradiative (phonon) and radiative (photon) relaxation of the

quantum oscillator into two independent, noninteracting multimode baths. We note

that the multiphonon rate Y1 has a temperature dependence given by Eq. (2.33) or

(2.34), while y2 is independent of temperature since we consider dipole transi-

tions of the active mode, i.e., the interaction Hamiltonian H', Eq. (2.35), con-

tains only linear coupling terms in the resonance excitation with frequence WkzWA.

For an Einstein spectrum, Yl2TrIGE 2PENE and yOz2T VFl2PF, and the average exci-

tation at resonance, A=Ak=0, becomes a simple exponential decaying function

<n(t)> = IGEI2QEE + IV I2P-j1l - e rt/22 (2.46)

which is characterized by the incoherent phonon field and the coherent laser field

with initial occupation P NE and pFn F , respectively.

Energy feedback effects on the laser excitation. The above discussion assumed no

direct phonon excitation via laser radiation and,that during the excitation of the

active mode, the phonon modes are assumed to be still cold enough that there is no

significant energy feedback from the laser-heated substrate.. For the case of

strong phonon coupling, i.e., a short lifetime for the active mode, the laser

photon energy absorbed by the active mode may be rapidly transferred to the phonon

modes and these thermal phonons may provide significant feedback energy to ther-
38

mally perturb the active mode. A rigorous calculation to include energy feed-

back effects due to the heated substrate involves the numerical solution of a non-

equilibrium system in which, instead of assuming a constant equilibrium occupation

number of the phonon modes, n (t)zn (0), one studies the transient occupation nj t)
i 35

by solving the heat diffusion equation

D V.(DVT) + 6 Y (t) . (2.47)

V

T is the laser-heated temperature of the system with diffusivity D and heat

capacity CV, and heat (excitation of the active mode) diffuses according to the

gradient, V, in the direction of energy flow. 0 is a coverage factor obtained
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from the knowledge of the number of active modes and the total absorption cross

section. The above equation is highly nonlinear because of the complicated tem-

perature dependence of the relaxation rate, y1 (t), which is now also time depen-

dent via the transient phonon occupation ni (t).

To demonstrate the feedback effects of the thermal phonons on the excitation of

the active mode, we analyze a simplified situation based on the microscopic

coupled Heisenberg equations rather than attempting a numerical solution of the

heat diffusion equation, which is a macroscopic description. We investigate the

multiphonon system where Eqs. (2.36)-(2.38) are iteratively solved to second order

in the active mode operator, aft). The average excitation of the active mode

including the feedback energy from the thermal phonons is found to be

(1) (2)
<n(t)> <n(t)> + <n(t)> (2.48a)

(1)where the first-order excitation <n(t)> is given by Eq. (2.39) and the second-

order excitation <n(t)> (2 at resonance, A -k-O, is given by

(2) 3 - 2G~I n (Yl 2 [ t2 4t ] fl _" tJ + (12l ,(2 4 bn Vi i i 1
which is proportional to the time-dependent quantity I G V6 (n. t)2 and provides the
feedback energy.

Master equation and energy population. The master equation describing the photon
29

energy population in the energy (n) space can be written 
as

I *dP

- -(In Aiw)P -(g /g )P I + (Ia AWiP --(gn-i/gn )P n] (2.49)
dt n n n n+l n+1 n-l n- n1

P is the population (adspecies/cm2) of the level of energy nliw (i.e., absorbing
n
n laser quanta, and gn is the degeneracy of the n-th level, related to the number

of vibrational modes S participating in the processes by

gn = go(n+l) " (2.50)

a is the quantal absorption cross section of the adspecies (as a whole) for a
n

transition from energy level n to n + 1. By investigating the structure of the

absorption cross section given by Eq. (2.49), we may in general express the cross

section in the form

on - (n+l)G * 
, (2.51)

where 0* and a are correlated parameters depending on the relative magnitudes of

the anharmonicity and the bandwidth. For example, by Eq. (2.51): c-l and a*-

Br0/[A2 +r2, for £*0 (harmonic oscillator) and -F0r (constant bandwidth);
0 0 2 n O

aw--l and ar*mBr /(2c*) ,for anharmonic oscIllator, 1~'I'C2C*(n+l/2) and &i--C'i
0~nO0
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a-0 and 0*-B/F0 for E*-AO and r' (n+l)P0; B depends on the dipole derivative.
2 9

The exact solution of the quantal master equation for general forms of n and gn

is not available. However, we shall discuss two limiting cases which are

physically interesting and can be analytically solved.

(1) CL-S-1 (single-mode harmonic oscillator). The master equation, Eq. (2.49),

for this case becomes

dPn- " (I0*/Kw)[(n+l)P + nP - (2n+l)P (2.52)-ftn+l n-1 n

By using the initial condition

Pn(t=0) = N06 (n) , (2.53)

and the normalization

00

Pn = No (2.54)
n=0

2where N is the total number of adspecies/cm2, the solution of Eq. (2.52) gives the
population function

Pn(t) N Wn(t)/[l+W(t)]nl , (2.55a)n 0

W(t) = , (2.55b)

S= jdtI = laser fluence (J/cm2 ) (2.55c)

The corresponding average excitation (quanta/adspecies) is

<n(t)> - 1i nP = W . (2.56)
NO  n

(2) a-0 (constant cross section), S=. For this case the master equation,

Eq. (2.49), becomes

dP
-n - - (Ia*^w) [ 2 Pn-Pn+l-Pn I ]  (2.57)

with the same initial condition Eq. (2.53) and by using the recurrence relation of

the modified Bessel function, we obtain the population function

P(t) -NNexp(- 2W)l (2W) , (2.58)n0n

where N is the normalization constant given by Eq. (2.54), I is the modified
n

Bessel function, and W is again given by Eq. (2.55).

The corresponding average excitation for this population is

<n(t) - 2(W/T)I 2  *1/2 (2.59)

We note that the average excitation is linearly proportional to the laser fluence,

--- --- jL~A-- -------
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1/2
<n(t)>- , in case (1), while <n(t)>O I /  in case (2). For the general expression

of a = (n+l) a*, we shall find a general form for the average excitation given by
n I/(2-a)

<n(t)> by using the diffusion approximation as follows. As mentioned

previously, the exact solutions of the quantal master equation are not available

for the general forms of a and gn" We shall now assume that the population Pn n n
the degeneracy gn and the cross section a are smooth functions in the n-space.n

The quantal master equation, under this quasicontinuum assumption, is then con-

verted into the classical diffusion equation

;Pn I 8 8n[annL(Pn/g (2.60)

Substituting Eqs. (2.50) and (2.51) into Eq. (2.60), a particular solution of Eq.

(2.60) consistent with the initial condition, Eq. (2.53) is

P ntW = NN gnexp(n Ma 2W)] (2.61a)

N = (6/g 0 ) (6 2w) S/$/F(S/0) , (2.61b)

8 = 2 - , (2.61c)

where W is again given by Eq. (2.55b) and N is the normalization factor. The

average excitation (quanta/adspecies) for this classical population function can

then be calculated as

= N0
1  dnPn = (82W) 11/r[(S-l)/B]P(S/B) (2.62)

which is proportional to a (since Waf) and consistent with the quantal results

Eqs. (2.56) and (2.59), for 8 = 1 (=l) and 8 - 2 (a=0). It is worth noting that

for ot = -1 (anharmonic oscillator) <n(t)>= I/ 3 in this classical diffusion model,

whereas the steady-state excitation <n(t)> 1 1/3 in the quantal Heisenberg-

Markoff model [Eq. (2.18)]. Combining Eqs. (2.50 and (2.51), we may express the

population function in terms of the average excitation

P =  0(F(S))SS )expl-(lF] , (2.63a)

F(S) - r[(S+l)/8]r(S/8) • (2.63b)

For a comparison with the above classical diffusion model, we now consider a

Boltzmann thermal distribution P*(t) which is characterized by the effective
n

temperature T and the quantal degeneracy g* [g in Eq. (2.50) is a classical
eff n n

degeneracy] as follows:

P* (t) - N 0g*exp(nw/kTeff ' (2.64)

where

..... ..... .. II I i i .. . ... .... N M R,...
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N P*/N - l-exp(]w/kTff S (2.65a)
n

gN = (n+S-l)I/[n!(S-i)l] , (2.65b)

aind the effective temperature Teff is defined as the average excitation energy per

','ibrational mode and is governed by energy conservation as

In = 4U<n(t)>/S , (2.66a)

n - iexpwTeff) -i (2.66b)

Fur a multiphoton process (n(t)> >>l), we obtain the high effective temperature

limit (kTeff V-tw), and for n >>S, Eqs. (2.65) and (2.66) reduce to

n kT eff/iw, kTeff = fiw<n(t)>/S , (2.67a)

S
N (kT ef /t) (2.67b)

g n S-i/(S-l)! = g (2.67c)

The population function reduces to

*() "= N0nS'1 exp nS (
n (S-l) ! (<n(t)>/S) S I (n(t)>J (

which is identical to the result of the classical diffusion equation, Eq. (2.63a)

for the case a = 1 (harmonic oscillator).

The distribution function given by Eq. (2.68) is shown in Fig. 5 with a Poisson

function which is obtained from a Schrodinger equation as follows. Denoting the

time-dependent wave function by

h*(t)> Cn (t)exp(-iEt )IM> , (2.69)
n-0

the probability amplitudes C (t) satisfy the RWA Schrodinger equationn

dC t)
if dn W V (t)C (t) + vn (t)Cn(t) ' (2.70)

dt n,n-. n-1 n ,n+1 n+l

where v (t) and v (t) are the matrix elements of the interactionn ,n-i n ,n+l

Hamiltonian H(t), Eq. (2.le), given by

V n,nllt) - <nlVcos(Wt)(a t+a)In-l>exp(iw n,nt) - Vcos(wt)exp(iw nn 1 t), (2.71)

V (t) /M Vcos(wt)exp(iw t) , (2.72)
n ,.n+1 n , n+l
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0.2

V.

Q1

0 2 4 6 8 10 12 14n
Fig. 5. The distribution functions of four-photon excitations (<n(t)>= 4), for
Poisson population (--), diffusion model population with S=l (---) and S=6 (.
Boltzmann population with S=1 ( . ) and S=6 (-), and quantal population with

S a l

Wn n-1 = (En-En-1 )/i (2.73)

E n 4i 1A-En-i/2)n , (2.74)

and V is proportional to the Rabi frequency given in Eq. (2.1f).

The analytic solution of Eq. (2.70) with the initial condition Ij(0)> . 10>,

(i.e., for cold surface, the adspecies is initially in the ground state) for the

harmonic case (* - 0) can be shown to be

Cn (t) = [(-iw)n!] / 2exp(-W/2) , (2.75)

where W is the energy absorbed by the active-mode given by

2 Al -yit 2-Y 1 t/2~
W 2 Ai + e -2e cos(At)] (2.76)A2+ (Yl1/2)2

namely, a Lorentzian form. The probability of finding the active mode in the

level In> is given by a Poisson distribution
30

Pn(t) , IC n(t) 2 - (Wn/nl)exp(-W). (2.77)

The average excitation (for £* - 0) is then given by

<n(t) 0 nPn - (2.78)
n-0

which is identical to the energy absorbed by the active mode for each adspecies

W and is equal to the average number of photons absorbed per adspecies.

7 - . . .. . . i i i I -1 . .. :1 t ,



26

Selective versus nonselective excitation. From the steady-state excitation of the

active mode [Eq. (2.25)], we see that in order to achieve a higher excitation the

laser field detuning should be red-shifted to the optimal value, A-2E*X, which is

due to the nonlinearity of the cubic equation. We also notice that the active-

mode excitation is characterized by the pumping rate, V, the energy relaxation

rate, y1, and the phase relaxation rate, y2. At optimal detuning, the steady-

state excitation [Eq. (2.25)] reduces to the simple expression

X = Y + n (2.79a)Y1

R . i--  (2.79b)

From the above expression we readily see that the excitation is governed by the

ratio between the pumping rate and the overall relaxation rate, R, for a fixed

surface temperature which defines the occupation number at thermal equilibrium, n.

For a large ratio , R , we shall expect a high active-mode excitation which means a

highly selective excitation process. For a small ratio, which is the strong

phonon coupling case with the energy relaxation rate, y I, characterized by a

single phonon or a few phonons, nonselective thermal heating of the system is

expected.

To investigate the above selective and nonselective features of laser-stimulated

processes more rigorously, we study a multilevel system with the vibrational

frequency spectrum shown in Fig. 6 and the energy level diagrams shown in Fig. 7.

The total Hamiltonian of the multilevel system (N levels in the A mode, M levels33
in each B mode and L levels in each C mode) can be written as follows:

H - H0 + HAB + HBC + H , (2.80)

H0 SNAwait a + S S-'fibtb + SS t  (2.81a)
0 N i i i K j j J L k Wckck(28

A S SS 4 i  S S S.gi a± I b +hc (2.81b)AB N J j 13 j NM j l i '-i

- t
H SS S b c + SSS Sft b 11 c + hc , (2.81c)
BC MLjk jk k Ljk jk j kk1 k

H(t) - I av (t)a a + hc (2.81d)
ief if if

S's denote the summations

N M L Jm k2-m-i
S ,s -, ., W - , Sk 1 ,(2.82)

j-I il'121" " m kl'k 2 #' ikn- k-k1

- - -.. ... ... .
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(A)
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(B) 146

C

° '

Fig. 6. (A) Schematic diagram of energy transfer processes among the laser photon,
the active mode (A) and the phonon modes (B and C); (B) Schematic diagram of the
density of states of the system.

AJ

(PUMNINIII RAAELASER PHOTON ULI POOOum

(PIWIlll RATE)

Fig. 7. Schematic energy level diagrams for the A, B and C modes, where V are the
pumping rates between the i-th and the (i+l)-th vibrational level of the Active
mode, coupled to the B mode via multiphonon coupling with the coupling factor

gi; Ym denotes the energy relaxation of the m-th level of the B mode due to
its coupling to the C modes which are condensed modes with density of states P.

...... .. . r - - --- - -
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iAi W B B*j b k C C*Ck (2.83)WJ A EA ii W e

where (OA' WB and WC are the fundamental frequencies (with anharmonicities

*, E* and C*) of the A, B and C modes, respectively; v. (t) is the pumping rate

for a transition from state i to the state f of the pumped A mode; g, K and g, K

are the coupling factors of A-B modes and B-C modes for single-phonon and

multiphonon processes, respectively; and hc stands for Hermitian conjugate.

The equations of motion of the Bose operators for the system are found to be

da. (t)ia iW
-dt = .a. (t) + I vif(t)af(t) + gi (t) , (2.84a)

dRB(t) N>
Sdt S1 V)B)(tW + gi )ai(t) + (I[B V(t),H BC]1 (2.84b)

dCV( ) i Cia (t) , 1t)( (2. 84b)

dt JBi=C

dC (t)
i dt = c(t) +<[ (,.c> , (2.84c)

where

Q, , (2.85a)
- ) k

V
N = II (n.+l)- ]] n. , (2.85b)

j=li j=l 3

n/kT 1 , (2.85c)

and the multiphonon operators are given by

V V

B (t) = b.(t) , C (t) =f ck(t) (2.86)V j ) k k(.6

The above coupled equations (Eq. (2.84)], describing a multilevel system subjected

to laser radiation with the accompanying multiphonon relaxations, are not

analytically solvable not only due to the many-body effects of the interaction

Hamiltonian, H., but also due to the large number of couplings when several

energy levels are considered. To overcome the difficulty caused by the many-body

effects, we shall use the Markoff approximation and treat the C modes as condensed

states where the summation over all the C modes may be replaced by an integral

over the associated density of states. These procedures enable us to approximate

the many-level system as a few-level system.

To demonstrate the selectivity for different pumping rates and multiphonon

relaxation rates, we examine a multiphonon process in which the A mode is

" ... . . I .. . . . . . . . . . - .t . . . . .. ..- d . . .I I i l1 .. . --
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described by a three-level system and is coupled to the m-th and the 2m-th level

of a decaying B mode via m-phonon coupling. Using Eq. (2.84) for the system

operators for the two-photon multiphonon process and employing the Markoff and

rotating-wave approximations, we obtain

S(t)- - iV1 a 2(t) exp(-iAt) , (2.87a)

a2(t) -iVI al(t) exp(iA t) - igI Bl(t) exp(-iAt) - iV2a3(t) exp(-iA2t),(2.87b)

a3(t) - - iV2 2 (t) exp(-iA 2t) - ig2 B 2 (t) exp(-iAt) , (2.87c)

(t) -ig* a2 (t) exp(i~it) - (Y /2) B (t) , (2.87d)

(t) - - ig* a3 (t) 2XPiA~t) - (Y2/2) B2 (t) , (2.87e)

2he 2w - 2 2
where AI 'A A 2 = A1 - 2"* Al - -B - ' - ma + 20* - A. F* is the

anharmonicity of the A mode and V, g, y are the pumping rates, coupling factors and

the damping rates for the related levels, respectively. The above coupled

t equations are again numerically solved to obtain the level populations:

P1 W la1 (t) 12, P A =a2(t) 12 + ja3 (t)1
2 and PB -B 1 (t)1

2 + 1B2 (t) 1
2

Therefore PA and PB describe the population dynamics of the photon energy

deposited in the A and B modes, respectively, while PC W 1 - (Pl+PA+PB) describes

the population loss of the (A+B) modes and represents thermal heating, i.e., the

portion of the photon energy randomized in the phonon bath C modes. The energy

populations are shown in Fig. 8(A) for selective excitation of the A mode with

(V,g,y) - (4,0.1,0.4) and in Fig 8(B) for nonselective heating of the C modes

with (V,g,y) - (4,1,1). We see that for fixed laser pumping rates, V1-V2-V, the

selective excitation of the active mode (A) requires a small multiphonon coupling

factor, g, and small energy leakage rates, y1-Y2-y, out of the B mode, while

appreciable nonselective thermal heating of the bath modes (C) is achieved when

the coupling factor and the damping rate are comparable to the pumping rate.
35Isotope separation of adspecies. Isotope separation of species in the gas

phase has been successfully studied both experimentally and theoretically. How-

ever, for a heterogeneous system, the separation of isotopic species adsorbed on a

solid surface has not been experimentally investigated extensively due to the com-

plexity of the technique, involving as it does a combination of surface physics,

molecular dynamics and laser optics. We illustrate some possible mechanisms for

isotope separation of adspecies using a model based on previously developed theory.

The ensemble-averaged equations of motion in HMP for a system consisting of a

mixture of two isotopic adspecies may be obtained by extending those for the
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single-species case (Eq. (2.22)1 as follows:

a(t) = LW fft)-wla(t) + VA/2 + Db(t), (2.88a)

b(t) [W:ff ()-Jb(t) + VB/2 + Da(t) , (2.88b)

<n (t)> = -VA<«Im~a(t)j >-2D«Ima(t)b t(t)j >>- yA <n (t)-nC/21 (2.880)
A A l A CJ

<A B(t)> M-V <VB«m~b(t)j >+2D«Ima(t)b t (t) I>>- vB (<n >t-nC/2] (2.88d)

where VA and VB are the pumping rates for the A and B modes, nc is the Bose-

Einstein distribution for the C modes, Im denotes the imaginary part and D is the

coupling strength between the isotopic adspecies A and B with the effective fre-A B
quencies wff and weff respectively, whose ensemble averages are given by

<<A'B - 2,B<n (t)>- iiA /2 (2.89a)

eff" -A,B -'A,B A,B~t> A,Br = A,,B,

A,B A,B + Y2,B (2.89b)

We note that both of the isotopic frequencies w A and w B are nearly resonant with

the laser frequency. <n A,B(t)> denote the average excitations of the A and B

species, respectively.

SP/(A) (4,9.1,9.4) 1

.1

.PC

j .3

.4

Fig. 8. Energy populations of A, B and C modes of two-photon multiphonon
processes, given by PA, PB and PC, respectively, for (pumping rate, coupling
factor, damping rate) - (V,g, y) - (A) (4,0.1,0.4): selective excitation; (B)

(4,1,1): nonselective thermal heating.
3 3
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The coupled equations [Eq. (2.88)), which are highly nonlinear due to the

anharmonic corrections 2E*<nA,B (t)> and the isotope coupling strength D, can only

be solved numerically. However,one can obtain the steady-state excitations for

the weak-coupling case, Dz0,

<n (t)> VA B/2]r '/Y (2.90)

AW A >>W2 +r,2'<n ,Bt "+ [rAB/z

which show that one of the adspecies may be selectively excitated without sig-

nificant excitation of the other when the laser frequency, w, is tuned to one of

the optimal value, i.e., AA A,B>> -w - 0, for either adspecies A or B.th otialvaue ie. eff eWff

To demonstrate the effect of the coupling strength, D, on the dynamics and the

steady-state excitations, we plot the numerical solutions of Eq. (2.88) for the

harmonic case (cA =0) in Fig. 9. It is seen that <n (t)> is higher than <n (t)>A ,B A B
for AA B< B where LA,B ' WA,B-W ' with D=0 [Fig. 9(A)]. As D increases, both

excitations decrease [Fig. 9(B)]. Increasing the coupling strength to the tran-

sition value, i.e., D = D*= (AB+A)/2, causes the steady-state excitations to

become identical [Fig. 9(C)]. For large coupling strength, D>D*, both excitations

are low and <n B(t)>is higher than <n A(t)> [Fig. 9(D)]. These numerical results

for the steady-state excitations are seen to be in accord with analytical results.

Defining the "difference excitation" K-E X - Y, where X and Y are the steady-state

excitations of the adspecies A and B, respectively, we obtain, from Eq. (2.88),
AB 3 V B and 1  ArFBr,

for e, 0, VAVB=V, A - 1 and

N- v2ra.C(n2D)/[4y Z2+Z 2] (2.91a)

2 2
z = A AB - D - (r/2) , (2.91b)

Z - M+/2 , (2.91c)

O A B ± A A (2.91d)

A A A, - (2.91s)

The above expression for the steady-state "difference excitation" N. displays the

following important features: Ci) isotopic selectivity increases with decreasing

coupling strength; (ii) when the coupling strength reaches the transition value

D - D* - R+, there is zero selectivity, i.e., N. - 0 as shown in Fig. 9(C).

(b) Classical models. In the previous sections we have treated the adspecies-

surface system as a quantum-mechanical system subject to laser radiation
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either as a classical field or as a quantized multimode field. We shall now con-

sider fully classical models, starting with a single-body system39 and then extend-
40-43

ing the treatments to a many-body system. The energy-transfer dynamics is

reexamined via the generalized Langevin equation where the memory effects, repre-

sented by a damping kernel and a dephasing kernel, are discussed.4 0 ,4 1  Multiphonon

relaxation processes and possible selective excitation of a specific bond are in-
41

vestigated in terms of the internal resonance condition. Cooperative excitations

using several lasers with optimum detunings are investigated. Finally, the results

of fully classical models are compared to those of the quantum-mechanical models.

Single-body system. Considering the active-mode of the adspecies as a classical

anharmonic oscillator and the remaining modes (inactive modes plus surface phonon

modes) as the heat bath, the normal-mode coordinate of the damped nonlinear39
oscillator, x, satisfies the classical equation 

of motion

2 2 3
+ 2y* + Wx + ix1 + X x3 = f(t)/m (2.92)

where y is the generalized damping factor (the overall absorption line broadening),

X\ and X 2 are the small anharmonic coefficients, m is the reduced mass of the

adspecies, and the driving radiation field f(t) is given by

f(t) - eE cos(e)cos(wt). (2.93)

5

4 (A) ~

3

2

0

CC) (D
4

3

°o 1 2 3 4 5

TIME (M UNITS O vY)

Fig. 9. Time-dependent excitations <nA 0(t)> of the active modes for the harmonic

case, i.e., * - 0 with (V,y,AA,#B) - (10,1,4,0) and D - (A)0, (B12, (C)D', and
(D)10. D* - (AA+4A)/ 2 - 6 is the transition value where N_ 0.3 5
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Here, e is the classical effective charge and eis the angle between the linearly

polarized electric field, E, and the direction of the pumped normal-mode coordi-

nate. The laser frequency wis tuned to be near resonant to the active-mode

frequency WA"

By the harmonic balance method, Eq. (2.92) can be linearized to second order in

i and first order in X2 :12

+ 2yx + 2 - f(t)/m , (2.94)
effX

where the effective frequency weff is related to the amplitude of the classical

oscillator A and the classical anharmonicity K* by

Weff 0 WA -* (2.95a)

2 3

K- 5X,/12W A - 3\ 2/W A . (2.95b)

The steady-state solution of Eq. (2.95) is straightforward:

x S.S(t) - A sin(wt) + A 2cos(wt) (2.96a)

where

A, 2(eE/m) (yw/Z)cos(e), (2.96b)

A2 - (eE/m) [W2ff-W2)/Z cos(e) (2.96c)

z . (w2ff w232 + (2wy) , (2.96d)

and
A2  2 +2

-A A+ A (2.96e)
1 2

Combining Eq. (2.93) and the time derivative of Eq. (2.96) we obtain the instan-

taneous steady-state power absorption of the oscillator

p(t) - f(t) S.(t) - eEwA cos 2 (wt) - (eEwA2/2) sin(2wt) (2.97)

Since the second term of Eq. (2.97) vanishes as a result of time averaging, we

obtain the time-averaged steady-state power absorption for near-resonant

excitations,

(( 22 2
~ ~~-1[(AK*A~j + Yjcs() .(.8

2
The classical steady-state excitation energy defined by E - mr2/2 p(t)/y results

in a cubic equation for the square of the amplitude, X A2

I.,

,, ...... .
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eE 2 , 2

( 12m] WA (2.99)

41(tAK*X) 
2 +Y2

41
Generalized Langevin equation. Equation (2.92), describing the motion of a

forced anharmonic oscillator, contains only the energy relaxation rate y and hence

cannot completely describe the overall energy-transfer dynamics which, in general,

should be characterized by both the energy and the phase relaxation factors as we

have shown in the quantum models. As an extension of Eq. (2.92), we investigate

the generalized Langevin equation (GLE):

xt+Jdt' K (t-t') X(tI)+f .dt' K2 (t-t') X(t) (t)+fR(t /m , (2.100)

where f(t) and f R(t) are the driving force due to the laser field and the sub-

strate-induced random force, respectively; K 1 and K2 are the kernal functions for

the energy and phase relaxation, respectively. The major mechanisms which cause

the T1 and T 2 relaxations are: (i) vibration-induced lattice-site transition

(migration) of the adspecies; (ii) anharmonic coupling of the phonon bath modes;

(iii) the inter- and -intraspecies interactions; (iv) the substrate-induced

thermal fluctuations of the effective dipole of the adspecies and the effective

electric field at the adspecies; and (v) charge transfer and coupling among vi-

brational degrees of freedom and other degrees of freedom, e.g., librations of

the adspecies.30 ,31 ,40 ,4 1  We note that the damping kernel (K1 ) characterizes the

dynamics of the energy relaxation of the excited adspecies while the dephasing

kernel (K 2 ) only governs the phasing information without causing any change of the

energy population.

Employing linear response theory and time-dependent perturbation theory, we may

express the averaged energy absorption rate as follows:
4 1

leE) 2

- -e- [l-exp(-8fiW)] (ReF[w]) , (2.101)

with B-(kT ) and Re denoting the real part of the Laplace-Fourier transform of

the velocity correlation function,
4 4

F - 0 dt exp(iwt)F(t) (2.102a)

F(t) - <X(t) X(0)> , (2.102b)

where the velocity autocorrelation function, F(t), is governed by the GLE in the

absence of the laser field. Multiplying both sides of Eq. (2.100) by X(O) and

performing the ensemble average over the initial conditions, we obtain the
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equation of motion for the velocity autocorrelation function

i(t) + dtKl (t-t')F(tl) + eff Jdt'K 2 (t-t')F(t') - (i(O)fR(t /m (2.103)

J0 1 f 0 2

Taking the Laplace-Fourier transform of Eq. (2.103), we find

F~w] - , (2.104)
[ iW + Kl[w) + W2ef 2 []

where K I M and K 2w] are the Laplace-Fourier transforms of the kernel functions.

In obtaining Eq. (2.104), we have used the initial equilibrium average, F(O) -

<X(0)X(0)> - kT 0/m, and the convolution theorem for the Laplace-Fourier transform,

For given forms of the kernel functions K (t) and K 2 (t), we can find the as-

sociated Laplace-Fourier transforms K, 2 (w] and compute the average energy

absorption rate from the real part of F[W]. In using the convolution theorem, the

kernel functions K (t) and the velocity autocorrelation function F(t) must be

well behaved, i.e., K (t), F(t)-O, as t-. Keeping this in mind, we consider a
1,2

Markoff process where the damping kernel is given by a Dirac delta function,

K 1l(t) = 2Y 6(t) , (2.106)

where y is a constant damping factor. Furthermore, the T dephasing kernel, K2 (t),

which destroys the coherent nature of the excitation phase but does not change the

energy population of the excited adspecies, is chosen to be an exponential form,

K 2(t) - exp(-2y 2t) , (2.107)

where y2 is a constant dephasing rate related to the phase correlation time by

2y 2 w T-. Working out the Laplace-Fourier transform of the kernel functions

K ,2[w] from Eqs. (2.106) and (2.107) and substituting the results into Eq.

(2.104), we obtain, from the real part of FMW] and Eq. (2.101), the averaged

energy absorption rate

"(E) 2 P(T )[ 2 )<] _, (2.108a)

0P(T (2f)-(kT0 /m) [l-exp(-hw/kT0)]  , (2.108b)

4,_' .. . it, ,:,.
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C ff - 2 + YiY 2  , (2.108c)

D W(Y + 
2 ) (2.108d)

The important features of the above equation are: (i) for low temperature

(kT0 <1'w), P(T0 ) To, and when the overall broadening (y1+y2 ) is weakly

temperature-dependent (for single-phonon relaxation processes), Eq. (2.108)

reduces to <dS/dt> T0; however, for multiphonon processes and/or high temperature

temperatures, P (T 0 ) T 0exp('Kw/kT 0 ) , <dc/dt> is strongly temperature-dependent;

(ii) for A- off-w<<w and y1Y2 << W2, Eq. (2.108) reduces to a Lorentzian with

FWHM - 2(y 1 +y2 ) I

0IdL (tE2 (yl+y2) 1
. P(T 0 ) A + 2 2 (2.109)t 2 0 2 + (Y1 + 2 )2

which, except for the temperature-dependent factor, reduces to Eq. (2.98) when

Y2-0.

Stochastic processes. In the previous stochastic quantum model, the many-body

effects of the phonon bath were accounted for by defining an effective Hamiltonian

in which the t(-ive-mode frequency had a complex stochastic component [Eq.

k_.74d)]. The litter was obtained as a result of an ensemble average over the

stochastic process.30  We shall now investigate the stochastic effects of the
i laser field,

f(t) = eE cos[wt + *(t)], 
(2.110)

where C(t) is a stochastic random phase factor. For a Markoff process with the

phase correlation function <4(t)4(t')> - 2y 06(t-t'), the ensemble average of the

field Eq. (2.110) becomes
-Yot<f (t) > - eE cos (wt~e 0 , (2.111)

namely a Lorentzian electric field for which Y0 is the frequency bandwidth and-i
Y1 describes the exponential decay of the field envelope at a point in space.

Employing the exponentially decaying laser field f(t) in Eq. (2.94), we obtain

the average energy stored in the pumped adspecies,

2e t Y (Y 0+Y)t/2 1(.1a<(t)> M 6 0 + e - 1- cos(At (2.112a)

0Kt2 E 21 1 (2.112b)
0 4m JA K*A 212+ [Y o2
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A novel feature of the above result is that due to the frequency width of the

decaying electric field, y0, the ensemble-averaged energy absorption of the

adspecies is governed by a total decay rate, y0+y, but the width of the steady-

state energy absorption profile is reduced, i.e., FWHM = y0-y. The time that it

takes the system to absorb the photon energy is determined by y0 or y, depending

on which is larger.

Many-body system. We consider a model system (as shown in Fig. 10) with a

diatomic molecule adsorbed on a solid surface and subjected to infrared radiation.

The classical Lagrangian may be written as 4 3

--0 + x f Wt (2.113a)
0 i i

=~i +~2 i~t~f -j _2 +1~ -1 + .x. +

11ZO = I _x-% 1 1) i i -Ei i>j
0 i=l,2i j 3 x i3

S Px + . . , (2.113b)

(p + 1)! ii 1
p=2 i>j

where mi., xi , Wi (i-i,2,3.... ) are the mass, the displacement, and the frequency

of the ith atoms, respectively, and the interaction terms with coupling constants

X.. and X(P) (between the ith and jth atoms) are referred to as the single-phononL3 ij
(linear) coupling and the p-phonon (nonlinear) coupling, respectively. Here the

admolecule is treated as an anharmonic oscillator (up to the quartic terms) while

the surface atoms are treated harmonically. The anharmonicities li, E2i and the

coupling constant A 12 are related to the derivatives of the potential energies and,

e.g., for a Morse potential

V(x1 ,X) D (1exp[-a(xl x2 x Os 2 (2.114)

we have -a 'D and X = 2a2 D. Similarly, the coupling
11 ehe (1i2 2 e 12 e

constants ij and V are related to the pair potential energy betweer the £th and
1) 13

th atoms by

a 2V(x. ,x.) a)l~x(2 ax ' x (2.115)

where the subscript zero means evaluation a the minimum of V(xlx 2 ). The second

term in Eq. (2.113a) is the interaction energy between the admolecule-surface

system and the laser field,

fi(t) - qiEi cos(t) cos(8 i) , (2.116)

where qi is the classical effective charge of the atoms, and Gi is the angle

i IV-

ili
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2 Z

Fig. 10. Diatomic molecule chemisorbed on a solid surface. The coupling constants
between adatoms 1 and 2 and among the adatoms and the surface atoms are given
by X12' 1Ij, and X2j' respectively. 4 2

between the linearly polarized electric field E. (with frequency w) and theI

coordinate vector for the optical active mode(s) of the system. Direct numerical

analysis of the equation of motion is not tractable due to the complicated many-

body effects of the surface atoms. To obtain analytical results, we shall con-

:er i less general Lagrangian, namely one where no explicit interactions are

_ sumed between the surface atoms. Furthermore, the interactions between the

admolecule and the surface atoms will be taken into account by introducing

damping factors. As an example, we consider CO adsorbed on a nickel surface and

subject to IR laser radiation with field frequency near resonance to the stretching

frequency of CO. Restricting ourselves to a truncated five-atom chain

O-C-Ni-Ni-Ni, with the oxygen atom labeled 1 and so on, the coupled Newton's
42

equation of i -ion describing this system are

m1x1 = -k1 2 (x1-x2 ) - Yi1 - f(t) , (2.117a)

m2 x2 = -k1 2 (x2 -x) - k 23(x-x) - x2 + f(t) (2.117b)

msx3 -k 23(x3-x) - ks (x3-x4 -y 3 (2.117c)

ms 4 - -k s (x 4 -x) - k s (x4 -x) - x4 (2.117d)

msx 5  -ks (x5-x4 ) - Yx5  ' (2.117e)

where k andy are the force constant and damping factor, and f(t) - qE sin(wt) is

the laser driving force. The force constants used here are: k m 16.8, k - 2.6
nnunits of mdyne/1), and the atom masses are m 16, m2 - 12, andand k =0.24 (in uiso dn/) n h tmmse r 1 -1,a 2 n

B

m - 58.71 (amu), where k - k -k4 5 ' and m 3 - m4 ' a5.ms s k34 45anms

These five coupled second-order differential equations are equivalent to a set

of ten coupled first-order differential equations, which were numerically solved
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by the Runge-Kutta method. In addition to the amplitudes of the chain atoms, we

can compute the energies

21 *2 1 k2X_2
E k ( i (2.118a)
A ~ mix4 1 2  1 2 '(.laial

1 .2 1 k2(x2x32
EB - mx 3 +k 2 3 , (2.l8b)

EC _ mx. + + (x-x2iJ4 s i 2 (2.118c)4-

where EA represents the energy of the adsorbed CO molecule, EB is the "energy" of

the surface, namely the outermost nickel atom, and EC is the energy of the rest of

the solid (chain nickel atoms, 4 and 5).

The numerical results for the amplitudes of the atoms and the energy profiles

E A , EB and EC are plotted in Fig. 11 for different sets of values of the damping

factor y and the detuning 6=w -w. Fig. 11(A) shows the exact resonance case

(A-0) with y=100 cm . The near-resonance cases are shown in Fig. 11(B) with
-I -i -i

y=100 cm and A=20 cm , Fig. 11(C) with y;=10 cm , and Fig. 11(D) with y-dO.

It is seen that the decaying and oscillating features of the energy profiles are

characterized by the damping factor and the detuning, respectively. We note that

the amplitudes of the excited CO molecule are much higl~r than those of the Ni

atoms due to the mass differences (atom-2 has the highest amplitude). The energy

profiles shown in Fig. 11 are generated for a high-power laser with intensity

1=1012 W/cm2 (hence short computation times, in contrast to the situation of a
14 -1

low-power laser). Due to the high frequency of the field wi04 sec: , we

require time steps on the order of 10-15 sec in using the Runge Kutta method.

For an actual system of low-power excitation LSSP (with laser intensity2I
IZ10-100 W/cm 2), we expect similar energy profiles as shown in the high-power

cases. This stems from the fact that the energy profiles shown in Fig. 11 are

"universal" for any range of laser power, provided the proper time scales (in

units of the reciprocal of the pumping rate) are chosen.

For a long-lived adspecies excited by low-power laser radiation, the time

scales of the energy profiles lie in the range 10- 3 to 10-6 sec, which are much

longer than the time period of the field (w -104 sec). The necessity of

using a mesh size of the order of the latter makes for very large computation

times for this case. To overcome these difficulties, particularly for low-power

excitation processes, we present a method which utilizes the concept of the
36

rotating-wave approximation borrowed from quantum mechanics. Consider a model

system consisting of adatoms 1 and 2 chemisorbed on a solid surface and subject to
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Fig. 11. Amplitudes of atoms and energy profiles for different bonds of the
Co/Ni system, subject to a 1igh-power laser with intensity I - 1012 W/CM2 , for
different sets of the damping factor (y) and the detuning (A): (A) y -100 cm-1

for exact resonance A-0, (B) Y- 100 cml1, A -20 cm, (C) Y 9 10 cm-1,
(D) y A 0.

- .. - --
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an external field [Visin(wt)], described by a set of coupled equations (for

nearest neighbor interactions):
4 3

W 12 (xlpx 2)
m1i M - ax 1  - mlylX1  + Vlsin(wt) , (2.119a)

m av 12 (x11x2) 3V2 3 (x2 1x3 ) + V sin(wt) (2.119b

22 ax 2  ax m2 y2 x2  2

__s_____- _____- 3 V,j+l xj'j+l)

m " R - li (xjIi -_ _ _(__xj__ - msY.x. + V.sin(wt), j?3 ,(2.139c)
sax. ax.s3

3 )

where x.(i-l,2,3,...,) is the coordinate of the ith atom for the longitudinal1

motion, and the damping terms miYixi are included to take into account the lateral

interactions between the atoms of one row with those of another. The damping

factors y (i-1,2) for the adatoms simulate the surface effects of the solid

crystal, and the damping factors y. (jZ3) of the solid atoms simulate the effect of

the bulk of the lattice in representing the free translational motion of the one-

dimensional linear chain. This is the significant difference of Eq. (2.119) from

that of the usual one-dimensional chain model, where the latter loses all the

many-body surface effects of the adatoms and the many-body bulk effects of the

solid atoms. By using the rotating frame

Yi(t) = x. (t) exp(iw0 t)

where w0 is the frequency of the optically-active mode of the adspecies-surface

system, we shall consider the near-resonant excitation with the detuning

-w 0 -w = 0 (for the harmonic model) or A - E - K -A 2 _ w z 0 [for the
anharmonic model - see Eq. (2.95)]. The coupled equations of motion Eq. (2.119)

become

-av 12  2 1 i~
mVw2 2 - mlyl(Y'+iWOyl) + Vie (2.120a)

l - + ml0Y1  ,

V12 3V 23 2 2 2+ 1 iAt2.120b)
m 2y2- y Y2 - + m2 W0 Y2  m2 Y2 i 2 +iOy 2 ) 2 v2 (

m av j-lJ av 1 + 2 + 1 -it J3 , (2.120c)

SP 3- y y ms 0 Y " mY(j+i 0 Yj) 2 j

where A E w0-w is the detuning. In obtaining Eq . (2.120) we have used the RWA,

that is, we have neglected the fast oscillating terms exp[li(w +w)t]. The
0

important features of the new equations of notion are: (i) due to the complex

*' 1A~ j
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coefficients, the j coupled equations are in fact 2j real equations (equivalent to

4j first-order differential equations which must be numerically solved); (ii) the

time-dependent field with the very fast sinusoidal function sin(wt) is eliminated

in the rotating frame by the RWA,and the coupled equations are characterized by

the detuning A which leads to a much slower oscillating function, exp(-iAt),

compared to the driving force V sin(wt) shown in the original equations of motion

(Eq. (2. 119) ] .

Reduction of the many-body problem and universal energy profiles. For tractable

results, we shall reduce the many-body problem described by Eq. (2.113) to a few-

body problem. For this purpose, we employ the orthogonal transform
4 3

xI = 1 2 I(XQ2 + X 2jQI) , (2.121a)

x = 1 (x Q - Q) P (2.121b)
2 1 j + )2 1} 2jQ2 Alj12

lj + X2j)J

x - Qj , j Z 3 (2.121c)xj

The Lagrangian of the model system becomes, in the transformed normal mode

coordinates Qi (i=1,2,3 ... ),
2 1-2 2 1 3 1 ,4]

(' .. Q = - - j - jKiQ,

j=3 '~ 2_ J - j=3 p-2

Q2 I) J -1I2.*11iX j+ 212
j=3 p=2 i

where the transformed frequencies are given by2 2 2 2
S m 2 2,lj + Q2lj,2j 2 12 lj 2j
1i,2 + Q21 2

a

1I,2 j

w , j 3 , C2.123b)

the transformed masses by

Q 2 1 mA2lj,l 2  + m2X~j2j) /A , (2.124a)

N S -mj j 3 , (2.124b)

LN 8 i j93(.2b
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kM - 1 ijx2 (m1  2 (2.124c)

the transformed new anharmonicities by

KI,2 = - ~ c12 ij,2) 132 2j X 2 (2.125a)
3

4 4
. x +C x

= 21 2j,lj 22 lj,2j
1, 2 x4 F(2.125b)

and the transformed generalized forces by

f ,2(t) = (x 2j.jF 1 ; X j,2jF2)/X. , (2.126a)

fi(t) = F.(t), j 3 (2.126b)

The new coupling constants (note- these are surf-7tce-atom site dependent) are

defined by

A2  2 -x m2 2X2 -
m 2  (2.127a)

2 2  2j i 2 1 2 2

x. = (x2  + X2 )i (2.127b)
j lj 2jIl
x(p) (P)

x P) lj 1j 2j 2j (2.127c)j (p+l)!

x (P )  (P)x

T(p) . lj 2j 2j '2j (2.127d)
j (p+l)!

n
In deriving Eq. (2.122), we have neglected the high-order anharmonic terms (Q.,
n > 4 ) and considered the linear coupling terms between Q1 and Q2 while keeping

the high-order couplings among the adatoms and the surface atoms. Moreover, the

couplings among the surface atoms (QiQj, i,j > 2), which gives rise to an infinite

number of coupled equations of motion, are effectively absorbed into the site-

dependent coupling constants (X i, 2j) and the frequency dispersion of the

surface-phonon modes.

The corresponding equations of motion in the transformed normal coordinates are

d~ )j -g .- 0 1 1,2,3, (2.128)

AtT' Q
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Substituting from Eq. (2.122), we obtain equations of motion, which are complicated43
and will not be shown here. We shall consider the situation ml m2<<Ms and near-
resonance excitation wz1,2, namely no direct laser excitation of the substrate

atoms. Under these conditions and employing the asymptotic (or harmonic balance)

method, 37 ,3 9 we obtain the linearized equation of motion, from Eq. (2.122) or

(2.128) with no multiphonon coupling terms, i.e., neglecting Q for ja3,

p?2,

+ [IQ2 + flt) /MI ' (2.129a)

1 1 [Q +f )] 2M l/

2 + I X.Q. + f (t) /M (2.129b)2 2 2 j-3 2 2

+ 2 Q Q2 /Ms , j a 3 (2.129c)

We have introduced the effective frequencies 01 and Q2 which are approximately

1 2related to the anharmonicities (K1.,K2.) and the steady-state amplitudes of the

modes (AIA 2) by

Q2 SI -K* A2  (2.130a)
1,2 1,2 1 ,2 1,2

where
S5KI, 3K',

SK1,2 -KK,2 12 2 8i, (2.130b)

1,2 12
To further reduce the above many-body system, we shall use an iterative scheme

starting with the homogenous zero-order solution of Eq. (2.129b)

Q(0lWt) - B0 cos(S2t) (2.131)20 2

From Eq. (2.131) we obtain the first-order solution of Eq. (2.129c) which results

in the ensemble-averaged equation of motion for the first-order solution of Q2 (t),

2 + - <Q2> - <QI> + f2(t) + <f(t) >]/ 2  , (2.132)

where < • > denotes the ensemble average over the surface temperature, and

<f > is the surface fluctuation force given by5

<f (t)> - (i X A cos(jt)) . (2.133)

y and 6w, the damping factor and frequency shift, respectively, are related to the

coupling constant Xj and the phonon density of states p by
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S -2 p  (2. 134a)

2 2

6W 1 -fdq. d (2.134b)W M2  2 -2
j-2

In deriving Eqs. (2.132) - (2.134), we have used a Wigner-Weisskopf-type approxi-

mation and replaced the sum over the phonon modes by an integral over the associ-

ated phonon mode density of states p(R.). The above classical results [Eq. (2.134)]3
are in exact agreement with our previous quantum-mechanical results where

the level broadening and the level shift correspond to the damping factor and the

frequency shift, respectively. It is important to note that, in Eq. (2.134), both

the coupling constant (2 ) and the phonon mode density p(01-2) are evaluated at

the frequency of the Q2 mode which is coupled to the surface phonon modes. For a

Debye model spectrum P(R.) 3Q /l with the cutoff frequency 0D, we obtain
j jD

y=37TX 2 )2]/(2 M 3) ,(2.135a)

MMM2% ~ D 2
-0 M2 a  1 - 2a-- lna - (2.135b)

So far, we have reduced the many-body problem to a two-body problem described by

the equations of motion (2.132) and (2.129b), where the surface-induced damping

factor and frequency shift of the n mode are introduced through the Langevin
2

equation. We shall now further reduce the two-body system to a single-body system

where the energy absorption profile may be exactly calculated. For this purpose,

we consider the situation where only one of the normal modes is nearly resonant

with the field and is strongly excited, namely 2=w. We further assume that mode

2 (with frequency S1 ) is weakly coupled to mode 1 (with frequency N--i>" ) but is
2 1 2

strongly coupled to the surface phonon modes via the single-phonon relaxation

factor y. The Langevin equation [Eq. (2.129)] reduces to a single-body equation

of motion

(2 t + 2() + '2 (Q2 (t)) - V2 cogs(Wt),(216

where we have assumed a "white noise" such that the surface fluctuating force has

a zero ensemble average, i.e., (fs(t)> - 0, and the pumping rate V2 is defined by

the generalized laser driving force f2 (t) - 2V2 cos(wt). The complete solution of

Eq. (2.136) is found to be

. 1
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(Q2 (t> - Aab sin(wt) + A el COS(Wt + e-/[Ao cos(Wjt) + B0 sin(wt)3  (2.137)

with the initial values

A0 02 (0)> , (2.138a)

B0  C0 (02o> + 'Y(Q2 ())] /W , (2.138b)

where

w; 2[ - y () 2] (2.138c)

A - 2V2/Z , (2.138d)Aab 2

Ael (n2 2]V 2 /z (2.138e)

Z - (n w232 + (yw)2  *(2.138f)

2 !2 - 6w (2.138g)

The constants Aab and Ael are referred to as the absorptive and the elastic

amplitudes because the time-averaged power absorption is entirely due to the

out-of-phase displacement Aab sin(wt) [which leads to an in-phase velocity with

respect to the driving field V2 cos (Wt)]. The corresponding stored energy in the
I pumped mode is

pus t)-EO + e-Ytc- 2e - y t / 2 Cos [( w -)t] 

(2.139a)

where E0 is the steady-state energy given by0f
2 

1
E = e _2 f(2.139b)E 2M2 e A2 + _ y)_ 2

Here we have introduced an effective electric field acting on the mode 2 (see Eq.

(2.126a)], for the classical effective charge e - ql W -q 21

)2 E2 cos(921 - ibEl cos(ce

Eeff 21 2 CO 2 Xiji1CS 1 (2.140a)Zef 2l +  2X

and the optimum detuning

which is laser intensity dependent [see Eq. (2.138)). By writing the laser in-

tensity I as E f/[8i/c), the steady-state energy may be expressed in a
off
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conventional form

E0 M (2.5 x 10-  (2.141)

2op t  -10
where the units used are E 0(eV), I(W/cm ), M2 (amu), e(4.8 x 10 esu), and both0 -1
the detuning and damping factor are in units of cm .

To demonstrate the analogy between the quantum and the classical results, we

investigate some of the limiting features of (Q2 (t)> and (t) for y-O and A-0.

For the free-oscillator case, i.e., y-0, the solution of Eq. (2.132) bec9mes

(t 2e E Cs16 t o 1 2122 > - .eff (2 optk2 opt LU
and the energy absorption of the pumped mode is given by

( 2 2 - Co (A
(t t27re /cM~ief I oE (2.143)

opt

which is an oscillatory function since the available energy, for the isolated B

mode, will be necessarily transferred back and forth between the pumped mode and

the laser field (via absorption and stimulated emission, in quantum-mechanical

language). Note that Eq. (2.143) reduces to

G(t) - (7re2 /CM 2 1it2 (2.144)

which is proportional to t2 for the exact resonance case, i.e., Aop t M 0.

The energy absorption given by Eq. (2.139) is shown in Fig. 12 for different

sets of the optimum detuning A and the damping factor y. It is important to
opt

note that these energy absorption profiles are universal for all ranges of the

laser intensity (I - 1 - 1012 W/cm 2) if the associated time scales are in units of
- y.For a comparison of the energy absorption profiles given by the reduced

single-body Langevin equation [Eq. (2.131)] and those of a set of coupled

equations for a many-body system (Eq. (2.118)], one may compare Fig. 11(C) with

Fig. 12 and also Fig. 11(D) with the results shown in Eqs. (2.143) and (2.144).

Excitation with several lasers. We now extend the excitation of a single-body

system by a single laser to the situation where several lasers of different

frequencies are used. Recent experiments have demonstrated the advantage of using

two lasers for the excitation of species in the gas phaseand recent quantum
45[ theoretical calculations support the experimental results. We shall show that

the results of the following classical treatment are identical to that of the
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z

A I

TIME t CIN UNITS OF Y- 1)

Fig. 12. Universal energy absorption profiles of the pumped mode for diff Irent
setsof he ptium etuingA tandthe damping factor (in units of cm- ):

cure Al op - oe'y= 2.51023; cuv B - = 0.5Y = 5 x 10-4; curve C -A
- Y- 1)-3 cuve - opt- 25y 2. x - The laser power is I -100 W;3

Note that the time scales are shown in units of Y-1 .

quantum treatment.

Consider the equation of motion for an anharmonic oscillator subjected to two

lasers at different frequencies [see Eq. (2.94)]

X+ 2Yi+ f2 = [f(t) + f (t)]/M (2.145)

where the driving radiation fields are given by

f I(t) - eE2 1Cos(1 t)

The steady-state solution of Eq. (2.145) is mdulated by the two laser frequencies:

X B. t)W - i m 1 2 [A i si n (Wi t) + a iCo ( i I

which yields the steady-state power absorption averaged over the period of the

field (cf. Eq. (2.98))
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i=l, 2  A. - KA i2 + 2 6

where Ai  w A-,Ai are the detunings of the radiations, and the interference term

P I(t) is given by

The interference term proportional to E E2 is likely to be negligible, since the

magnitudes of the time-averaged quantities iosT(F-J)t] and sin[(wl-w2)t] are

much smaller than those of the direct terms which involve cos(2wit) and
sin(2wo.t) for i 2 . Therefore the absorption power p(t) is mainly due to the

second terms in Eq. (2.146). Two important featuresof this two-laser excitation
are: (i) due to the anharmonicity K*A2 there is an optimal detuning for which one

I 1
gets maximum excitation for a fixed laser intensity; (ii) excitation via a single

laser whose intensity equals (V1+V2) is less efficient than that obtained using

two lasers at different frequencies. The latter can be understood as follows:
In the initial stage of the excitations, the adspecies is excited mainly by the

action of the first laser with <A. After the adspecies is highly excited, the

second laser with E 2.)satisfies the near-resonance conditicn for the excitation

of the anharmonic oscillator whose fequency is lower for higher energy. We note

that this cooperative effect in utilizing several lasers for the excitation of

anharmonic adspecies is due to nonlinear features of the system. The above
classical results are consistent with those of a quantum model. 5 .

Classical versus qantum models. We can compare the above classical results with
those of the quantum models using the following quasiquantum arguments:

acio of th firs lase wihw1<, fe h dp si ihyectd h

o where e is a classical charge, ' (0) is the matrix lement of the derivative

of the dipole moment A is the amplitude and <n> is the quantum average

excitation. This correspondence allows us to relate the results of the classical

treatment to those of the quantum treatments as follows:

I:

e (0)
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s0

Quantities Classical Quantum

Steady-state
excitation Eq. (2.99) Eq. (2.18),(2.25)

Transient energy Eq. (2.139a) Eq. (2.17),(2.76)

Many-body
effects Eq. (2.134) Eq. (2.10),(2.33)

Equations of
motion Eq. (2.129) Eq. (2.5), (2.84)

Rotating frame Eq. (2.120) Eq. (2.16),(2.32)

(c) "Almost first-principles" treatment. In the model calculations discussed

earlier, the vibrational dynamics of IR LSSP were treated in terms of a variety of

system parameters, including the laser-adpsecies interaction strength V, the

energy and phase-relaxation rates, Y1 and y2, respectively, the anharmonicity of

the absorptive potential, C*, and the frequency mismatch between the laser and the

active mode, A. From a first-principles point of view, the problem cannot, in

general, be reduced to that of an adatom moving in a Morse-type one-dimensional

potential. In fact, as will become clear later, the potential can at best be

written as
i4.+

(0) ( (0) , - (0) iG-X (2.147)
V (r) iV (X, z) (Z) eV(2(z47

G

.
G.

where G represents a two-dimensional reciprocal lattice vector, r is the position

vector of the adatom, r - (x,y,z) = (X,z) and V 0
. (z) is the Fourier component of

the potential V (r) with respect to the x and y coordinates representing the
(0)surface plane. The Fourier component V 0)(z) may look like an anharmonic Morse-

type potential, but components with G0 will in general be nonnegligible and con-

tain important physical information.4 6 This makes it impractical to define actual

frequency mismatch and anharmonicity parameters for the system. Furthermore,

since the solutions of a potential with two-dimensional periodicity along the

ny-plane are broad bands separated by energy gaps which vary as a function of the

two-dimensional wave vector,4 7 it is also difficult to conceive of a single active

mode with a fixed energy difference. The problems of phonon-stimulated desorption

and inelastic scattering of atoms from solid surfaces have recently received con-

siderable attention. The literature has been reviewed,48 ,4 9 and we shall only

make brief comments for the sake of perspective. Treatments of these problems

have ranged from classical and semiclassical to quantum mechanical. The latter

have been mainly confined to linear-chain models with a Morse-type potential

between the outermost lattice atom and the adatom. The few three-dimensional

, i i i
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treatments of these problems5 0- 52 have given rise to some controversy. For example,
50

Bendow and Ying 0use a three-dimensional treatment to obtain a value of the pre-

exponential factor T 0 10-5s for C/Xe-Ne in Frenkel's formula for the desorption
time

T TO e
Ea /k BT s  (2.148)

where Ea is an effective well-depth of the adsorptive potential, kB is

Boltzmann's constant and Ts the surface temperature. However, Goodman and

Romero51 obtain a value of T0 10-12 s using both one- and three-dimensional model

treatments. This work and that of Kreuzer et al. 52 further suggest that there is

little difference between the results of one- and three-dimensional treatments of

the desorption problem. The flash-desorption experiments of Cohen and King 53, on

the other hand, seem to confirm the kind of trends obtained by Bendow and Ying,

and emphasize the need for a deeper analysis of the theory.
54-57

In a series of papers, Adelman, Doll and coworkers have developed the

generalized Langevin equation (GLE) approach to both scattering and desorption.

This primarily classical approach combines the standard techniques of gas-phase

scattering theory and that of generalized Brownian motion developed by Mori,
5 8

Kubo 4 4 and Zwanzig.59 Projection operators are used to separate out the degrees of

freedom associated with a 'primary' zone (the 'gas' atom and one or more surface

atoms) and those associated with a 'secondary' zone (the rest of the atoms of the

solid). The resulting equations of motion include the effects of the motion of

the lattice atoms and the projectile as independent random forces with the coup-

ling constants most effectively treated as phenomenological constants. While the

Markoff or Brownian limit may not be justified for scattering off pure solids,

the theory is appropriate for the treatment of slow processes such as desorption,

migration or adsorption of heavy particles, or processes involving a strongly

localized interaction between the 'gas' atom and the solid. In related work

involving Monte Carlo sampling of classical stochastic trajectories for the in-

corporation of lattice many-body effects, Tully et al.60 6 1 suggest a technique

which may be better suited for treatments of some types of dissociation, de-

sorption and reactions than the Adelman model.

An alternative approach to the problems is represented by the close-coupling

treatment of Wolken et al. 6 2 , who utilize an empirical potential (the London-

Eyring-Polanyi-Sato, LEpS, potential) to compute classical trajectories, as well

as a quantum mechanical three-dimensional treatment of molecule-solid energy

transfer6 3 in which internal modes of the molecule and one-phonon states of the

solid are included. Both treatments give results in qualitative agreement with

experiment. For hydrogen recombination on W(001), for example, the angular

......
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distributions of desorbed species are found to be substantially noncosine in form

and peaked toward the surface normal, in qualitative agreement with experiment.

In another study of the dissociative adsorption of a diatom on a solid surface

using the generalized Langevin method with a LEPS potential, Diebold and Wolken
64

find that energy accommodation and dissociative adsorption depend on the Debye

temperature T of the solid, with an increase in TD drastically lowering bothDD

energy transfer and the amount of dissociative adsorption.

The inelastic effects in the studies discussed so far have been due to phonon

modes of the solid (and, to some extent, internal modes of the incident particle).

However, band structure effects,4 6'4 7'6 5 which can also give rise to deviations

from purely elastic scattering, were not included. By band structure effects we

mean the trapping of particles whose wave vectors match those corresponding to

bound states of the two-dimensionally periodic potential at the solid surface.

This leads to the so-called selective adsorption. Identified in the past with

minima in the intensity of specular reflections of atomic beams, selective-

adsorption transitions have also been experimentally shown to give rise to

maxima,6 6 an observation recently confirmed theoretically by Weare and coworkers .
7

Very accurate quantum mechanical calculations have established these effects for a

variety of systems with He/LiF being a prototype.68

In a comparative study of some of the current techniques for treating atomic

scattering from surfaces, Masel et al.69 discuss the CCGM, quasiclassical,

Kirchoff and semiclassical approximations. CCGM is an extensively used procedure

based on a weak-coupling formalism with a unitarization step whose justification

lies mainly in the computational convenience it affords; the Kirchoff approxi-

mation is an adaptation of the Eikonal approximation well-known in the field of

optics; the semiclassical approximation consists of a description of states of

the system in terms of sets of classical trajectories; and the quasiclassical

method differs from the semiclassical in that phase interference is ignored and

only angle-averaged intensities are computed. The conclusions of Masel et al. can

be summarized as follows: CCGM is appropriate only for the case of weak coupling;

the quasiclassical approximation gives qualitatively correct rainbow scattering

but is incapable of reproducing the detailed structures due to quantum inter-

ference effects; the Kirchoff and semiclassical approximations provide the best

quantitative agreement for scattering off sinusoidal hard walls except at low

incident energies, a problem that can be overcome by employing a renormalization

procedure.

The many-body aspects of phonon-stimulated migration, desorption and scattering

of atoms or molecules at solid surfaces have been treated within a quantum-

statistical framework by Metiu and coworkers.7 0- 74 Zwanzig's projection operator
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technique5 9 is used to separate out particular degrees of freedom (phonons,

migration, desorption) from the overall density matrix, and solutions of

Liouville's equation involving correlation functions of the appropriate operators

lead to probabilities of finding the particle in given states and at given sites

as a function of time. Physical observables such as the mean square displacement
72

can then be computed. An important facet of this work is the treatment of the
71

case of strong interaction between the adspecies and the surface atoms. The

induced distortion of the surface and the resulting change in the interaction

potential between the adspecies and the surface are accounted for by renormalizing

the Hamiltonian via a canonical transformation. The transformed degrees of

freedom correspond to the motion of a pseudomolecule, consisting of the adspecies

and the distorted atoms, with a renormalized mass. The other interactions can be

treated perturbatively. For the migration problem,7 1 contributions to the mean

square displacement <R 2>tcan be due to coherent or incoherent hopping or incoherent

excitation. It is found that for low temperatures, <R 2>tt 2, i.e., free-particle-

like. For high temperatures, on the other hand, <R2 >at, namely diffusional for

short times. In an extension of the above calculation,7 2 horizontal, vertical and

oblique transitions were included, namely transitions involving change of state

but not site, change of site but not energy, and change of both site and energy,

respectively. It is concluded that if tunnelling is minimal and migration is

possible only when the particle is excited to a level above the potential barrier

along the xy-plane via phonon excitation, the diffusion coefficient has an

Arrhenius temperature dependence. If tunnelling is important, non-Arrhenius-type

behavior may result.

A one-dimensional model has been used to numerically obtain the rate of thermal

desorption of an atom from a solid surface.73 ,7 4 With the atom-solid interaction

simulated by a Morse potential between the adatom and the nearest surface atom,

energy transfer takes place via a perturbation which is the difference between

the instantaneous potential and its thermal average over the lattice atom

positions. The transition rates computed with this perturbation and Fermi's

golden rule are used in a master equation to obtain the probability of finding

the atom in a given state as a function of time. This ignores memory effects

which are important only if the relaxation time of the correlation function of the

perturbation is of the same order as or larger than the time scale over which the

probability changes appreciably. The results show again that the desorption rate

does not fit the Arrhenius form except in a small temperature range. Since the

potential is not expanded in normal coordinates, all multiphonon transitions are

included. Detailed analysis of individual contributions shows that if the

vibrational frequency of the chemisorptive bond is larger than the Debye frequency,

- w-_ ---
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multiphonon processes to all orders must be included.
74

75-77
Kreuzer et al. have also presented a quantum-statistical theory of ad-

sorption, flash desorption and isothermal desorption. Among the major conclusions

of their work are: (i) a confirmation that Frenkel's formula for the desorption

time, Eq. (2.148), is valid only for a small temperature range; (ii) the constant

E can be up to 25% larger than the actual binding energy of the adparticle ina
the surface potential; (iii) one-dimensional and three-dimensional theories give

similar results for the desorption times and the latter can be quite large

(-10-5 s) as shown by experiment.

To sunmarize the results of the above survey, we note that, in general, multi-

phonon processes are important for a correct description of the energetics of

surface processes. Physisorption and chemisorption must be treated quite differ-

ently, because a straightforward application of perturbation theory is not valid

for the latter due to the strong chemical bonds between the adspecies and the

surface. Band-structure effects resulting from the two-dimensional perodicity of

the surface contain important physical information, but the similarity of results

for desorption times from one- and three-dimensional models 52,53 stresses the need

for more first-principles analyses of this aspect of the problem. Most of

these studies are effective in providing qualitative pictures of the dynamical

processes taking place at the surface, but the dearth of information such as mi-

gration or relaxation rates limits their ability to quantitatively describe surface

phenomena. Some of the necessary parameters can be obtained theoretically, but

they are subject to uncertainties arising from the need to use empirical po-

tent4.ls, low dimensionality and assumptions such as simple additivity of tran-

sition rates due to different perturbations.

Let us pass on now to the problem of vibrational degrees of freedom involved in

surface processes in the presence of laser radiation. Experimentally the problem

has not been studied extensively. One of the earlier experiments involved dehy-

droxylation and reactions between amino groups and hydroxyl groups on a silica
11

surface:

H H
I I
o 0

---Si- + Si- - + H 01 I
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H

o \N /

HH HH

0 N

I I
S - + NH 3  Si- + H20

N N0
_ _ 1 I

Si + NHH

H H H H
\ /I I

N 0 N

--6i-" + -Si- Si i + H2 OI I /X I

As a result of irradiation by a 10 W/cm2 CO2 laser, these reactions occurred at
rates much higher than those for the corresponding thermal reactions; furthermore,

these increased rates were only observed for laser frequencies close to the ab-

sorption peaks in the IR spectrum of the adsorbed molecules. While these are

clear examples of selective LSSP, the exact mechanism responsible for the selec-

tivity is not obvious. One possibility is the selective laser pumping of a par-

ticular vibrational mode of the adsorbed molecules, followed by enhanced migration,
11

dissociation and desorption. Alternatively, a mechanism involving electron

transfer between adsorption sites has been suggested.17  Rough estimates of the

lifetime of the vibrationally-excited states of the Si-N bond (T Z 10-11 s) tend
4 to argue in favor of the electron-hopping mechanism, but there is no conclusive

evidence for the validity of the latter. There are other instances of this type

of LSSP1 2 - 14,16,20,78 as well as of the type where radiation is absorbed by the

molecules in the gas phase, with subsequent reaction taking place at the solid

surface. 8 10 ' 1 8 ' 7 9 ' 8 0  Again, it is difficult to describe the exact mechanism for

the selective reactions, especially insofar as the rate-determining step is

TAi concerned.

There has been a steady growth in the theoretical literature on LSSP over the

last five years, as reviewed and referred to in this article. However, not much
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of this work is of a "first-principles" nature. In what follows we present an

"almost first-principles" treatment of laser-stimulated excitation of vibrational

degrees of freedom of an adspecies-solid system, as recently developed by Beri
81

et al. This theory is free of phenomenological parameters (except those used to

define an effective pair potential between the adatom and lattice atoms) and is

therefore capable of providing a quantitative description of LSSP. The formalism

attempts to describe the absorption of low-power infrared laser radiation by an

adatom vibrating in an effective potential due to the atoms of the solid. This
potential has the two-dimensional periodicity of the surface, which gives rise to

stationary states with a band structure. At the present stage of the calculation,

electronic degrees of freedom of the solid, which provide an i portant energy re-

Laxation channel in metals, are not being considered. Preliminary theoretical

study of such effects have been made by us (see Sec. 2.B) and Metiu et al.27'8 2

The temporal evolution of the system can be described as follows. At time t-- ,

the adatom gets adsorbed on the surface of the solid in a potential which neglects

all lattice vibrations. The stationary states of such a potential correspond to a

set of bands which reflect the translational symmetry along the xy-plane. Between

t=-m and t=O the lattice vibrations are "turned on", modifying the original

occupation state of the bands to a new average steady-state configuration at

temperature TB. At t-0, a low-power CW IR laser, described by a vector potential

A and frequency wL close to the energy gaps in important occupied regions of

k-space, is turned on. It is further assumed that the laser frequency is far

removed from important IR absorption bands of the solid. Energy from the electro-

magnetic field will then be absorbed primarily by the adatom-surface bond (the
"adbond"). Since the latter is coupled to the solid, there will be an interchange

of energy between the adbond and phonons. This energy interchange is the prcs:ess

of primary interest.

The potential function for an atom or molecule adsorbed on a solid can probably

be computed from first-principles. This would involve the solution of a multi-

center many-electron problem, necessitating the calculation of a very large number

of complicated Coulomb and nonlocal exchange integrals for many positions of the

adatom. Such a task is formidable and, to our knowledge, has not been attempted

for any real system. Fortunately, knowledge of the detailed potential function is

not necessary for a reasonable description of the dynamics of vibrational LSSP.

Infrared spectra of diatomic molecules can be fitted quite well by assuming that

the atoms interact Aa simple anharmonic potentials, such as the Morse or Lennard-
83

Jones potential, involving two or three parameters. We assume the potential be-

tween the atoms of the adparticle and each atom in the lattice to be such a pair

potential. The effective potential obtained by simIng these up should provide a
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good semiquantitative description of the overall interaction - smooth periodic

behavior along the xy-plane, a nearly infinite wall at z-0, minima for small
0

values of z (_2A), and a tail approaching the zero of energy asymptotically. In

the case of periodic systems it is convenient to transform the problem into

Fourier space, where the smoothness of the potential allows a good representation

with only the lowest few components.

There are two distinct vantage points for viewing the energy interchange

mentioned earlier. In the thermodynamic point of view, the two subsystems, namely

the adbond and the phonon bath, are each assigned average temperatures TA and TB,

respectively (TA>TB), so that energy flow is unidirectional and time evolution of

the states of the subsystems is not studied. In the microscopic, more determin-

istic approach, time evolution of the states of the subsystems is followed in

detail. Energy transfer in this case can be bidirectional, since upward tran-

sitions can take place in the adbond as a result of destruction of high-energy

phonons and creation of lower energy ones in the solid. The rest of this section

is devoted to a formulation based on the second approach.

The Hamiltonian for an adatom of mass m under the of an effective
(0) 4potential V (r) due to the solid at equilibrium can be written as

(0) A 2 2 (0
IV- V; + V ( ) ( r )  ' (2.149)

a 2 r

(0) - # *-0where V (r) is a sum of pair potentials v(r-R I )) between the adatom at position
r and lattice particles at equilibrium positions R.

(0) ((0)V (r)w v (r-R~ (2.150)

v r-RL ) can be chosen to be a Morse, Lennard-Jones or other convenient form of

pair potential. While isotropic (angle-independent) forms are most convenient,

those with angular dependence provide a better representation of band-structure

effects.4 6 ,8 4  The actual instantaneous potential is obtained by replacing the

R by the instantaneous positions R.,

V(r) v(r-R.) , (2.151)

and the difference

(0)A?- v(r) -v (r)

is the perturbation responsible for energy interchange between the adbond and the

lattice vibrations.
The complete Hamiltonian for the adatom-solid system contains, in addition to
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-(0) (0)a-r and AWr the Hamiltonian for the harmonic lattice v the interaction of thea v ;teitrcino h

laser field with the adbond provides another perturbation r Thus the total
r

Hamiltonian is

W = (0) +,(o) + A /+ (2.12)
a "V r

_ + ( 2.153)

where we have defined 00) to be the sum of-;V0) and R(0). The solutions for the85 a

harmonic lattice and those for the adbond46 ,4 7 ,6 5 ,84 ,86 in the potential
(0) -+

V (r) can be obtained by well-known techniques which will be briefly reviewed

for completeness. Overall solutions of W (0 ) are then just products of solutions
of 100) and IV(° ).

a v (0)
The transformation of the real coordinates R(  of the lattice particles to

normal (phonon) coordinates qb(k), where b represents a branch in the phonon band

structure and k is a wave vector in the first Brillouin zone (FBZ) of the reciprocal

lattice, gives rise to a Hamiltonian for the harmonic lattice of the form

(0 1 q(k) + 1(,) 2(k)2
Vv ( ' 2)4.b Wb k bjk(.14

kb

where mb(%) is the frequency. The transformation is based on a Born-Oppenheimer

approximation and the inclusion of only harmonic terms in the interatomic poten-

tial D, being a particular electronic state of the crystal. The crystal is

thereby reduced to a set of 38N noninteracting one-dimensional harmonic

oscillators, where B is the number of atoms in a unit cell and N is the number of

unit cells in the crystal.

The Schrodinger equation for the crystal is

2 2 + & ( ) ( 0) (0) , (2.155)

where IF(0) is the total wave function for the crystal in a state f{vb(k)})

described by the set of phonon occupation nmbers {vb(k) }. Since the phonons

represent noninteracting harmonic oscillators, T(0 ) can be written as a product of(0) v
single-oscillator wave functions V()

vbt)

~(0) *(0) q(2 1 6
-. v 0 ) I% i (2.156
kb b(k)

The Schr6dinger equation, Eq. (2.155), then reduces to 38N single-oscillator

i , ... ' h
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~equations e i, (0) [(q (0), ( q0) (2.157)

v(vb(k) bVb(k) b(k) blt))

where W(0) .) is the expression within the braces in Eq. (2.155). The solutions of
v (k)

Eq. (2.l57) are well known,

Se W H v e{ i (2.158)

where Hv is the vath-order Hetmite polynomial, and we have used the abbreviated

forms v ,, q and wo for vb (), qb(t) and wb (t), respectively. The total lattice

vibrational energy of the solid in a state I{vO}> described by the set of phonon

occupation numbers {v,} is then given by

£(0) ; g(o) (2.159)
v .- vb(K)

kb

[ W[b~~ +~jhb~ (2.160)

It is useful to define phonon creation and annihilation operators a and a0,

respectively,

ac 1 'w- - i (2.161)

I

a0 - - , a (2.162)
in terms of which 

(V-

Ai 0

Use of the relations

ao Iv 1 1v,.-V.,.v 1 ,...) vl v,,-.-vo--), v,:,...) (2.164)

and

aolvl,v2 ",v,,v,+,.-- >  - v Ivlv 2 ,--.,(v,,-) v+..-..> (2.165)

greatly simplifies the calculation of matrix elements of operators which are

functions of phonon coordinates or momenta, q or 4a, between multiphonon states

I{vol> Of particular importance is the lattice displacement operator

.A .... . V. . -. z- .v ', _



ITI
60

- I-(0) 1'I . e a + at (2.166)
E~k -k b~t(~

M being the mass of the lattice atoms (assuming one atom per unit cell), and

eb(k) a phonon polarization vector.

Let us now examine the nature of the solutions for the adbond, represented by

the Schrodinger equation
( 0) ,j ( 0) M (O l) ,( 0)( 2 1 7

Wa a Pa *a

(0) (0)with VP given by Eq. (2.149). The potential V (r) is periodic along the plane
a

of the surface, i.e.,

(0) (;+ (0) (0) (r) (2.168)

for all two-dimensional (2D) lattice vectors 0given by

(0) -' (0) (0)] 4.X X it , x21 n1 a1 + n2a2 , (2.169)

nl , n2 being integers and aI , a2 primitive surface lattice vectors. The periodicity

allows a partial Fourier expansion of V () in the 2D real space represented by

the plane of the surface with A the area of a 2D unit cell on the surface,

v(° R = V° (X,- -) v°1 (z1. '  (2.170)

I G

V (z = A-1di V ((X,z) e ,(2.171)uu

the summation running over all 2D reciprocal lattice vectors (RLV) G given by

•"m1 1 + m 2 2  , (2.172)

4 2t(a2 X (2.173)
1 4 .

a I*(a 2x)

4 2r(zX'S

b2 "(2.174)a,. (a 2 X Z)

Here Z is an arbitrary vector in the z-direction and m and m2 are integers. Thus,

for any plane parallel to the surface plane, the 2D RLV are completely specified by

two integers m and a2 and we can write

2P,

pI
- - ~ 4~&~~:4
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V. ) (z) V (0) (z) (2.175)
G m m2

The Fourier series in Eq. (2.170) converges quite rapidly, and often the function
(0)Vm (z) becomes negligible for mlm 2>2 as compared to its values for ml,m2<2.

There is evidence for this in recent calculations using sunimed pair poten-
tials4 6 4 7 6 8 and in the qualitative success of model 6 9 '8 7 using pure sinusoidal

functions for V 0 ().

The stationary states for a single particle in a periodic potential are

characterized by a quasicontinuum of quantum numbers, namely 2D wave vectors

vI4  v24

n 1 (2.176)

V1 and v2 are integers, and N1 and N2 signify the large number of unit cells along

the a1- and a2-directions, respectively, beyond which the crystal surface is

repeated. The single-particle states *a0 ) must then satisfy the Born-von Karman

boundary conditions on a surface,

(0) (0 (0)Ia (r + , a (I + N212) - (0) (r) (2.177)

j leading to Bloch functions

(r) 4 (o We.e (2.178)
0 jnI a

c and j being quantum numbers representing a band index and quantization of motion

in the z-direction, respectively. The summation over all 2D RLV i in Eq. (2.178)

allows us to restrict - fn1+42 to the 2D FEZ, namely the area defined by
b b b b

1 6- TI n1  _I ; - S< n2 S _3 (2.179)2 1 2 2 2

(0) -1- (0)Using the expansions of V (r) and *4.(f) in the Schrodinger equation, Eq.

(2.167), we get

V $(z)e - o-i~+ (z) exp(ia.X) exp(iln.1') =0. (2.180)

Because of symetry associated with translation of the reciprocal lattice by RLV's,

this reduces to

K [[ 7~- 2  4S.. 1+ )2 -(O] ( ) *~ (0) (0) 4)]x[ ~9a.j-0

(2.181)

__il" . , ..
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which in turn leads to a set of coupled differential equations for the (0) (Z)

wave functions,r 2d2 2" 1 ~ jnG n

.0) (0) (0)
2m 2  2m +)4 + (Z) + V 0 (Z) 0 ' (Z) - 0. (2.182)2m d_2  G'

(0) -0.The functions p (r) are constructed from solutions of Eq. (2.182).

Let us now consider the terms A1 and #. The simplest situation is one where
r

A* and #, are small independent perturbations which can be assumed to act se-
r

quentially but not simultaneously. However, that is seldom the case, and it is

necessary to define the limitations of such an approach and available alternatives.

The phenomenological studies described earlier provide some insight into these

problems. They suggest that the applicability of a perturbative approach can be

based on quantities such as the relative time scales of the adbond vibration and

the phonons, the associated energy gap and the effective coupling between the two.

Thus, for high temperatures, large optical pumping rates, very strong bonding

between the adatom and the surface, or a very small energy difference between the

adbond vibrational frequency and the Debye frequency of the solid, a perturbative

approach is inadequate. In the case of strong interaction, for example, the sep-

aration of adbond degrees of freedom and vibrational degrees of freedom of the sol-

id is inappropriate, and it becomes necessary to define a new basis set which is

a combination of the two.7 1 A similai situation prevails when the "fundamental"

of the adbond vibration is very close to the Debye frequency of the solid. This

is analogous to the case where an adatom has valence electrons in a level whose

energy is the same as that of one of the valence electronic states of the solid;

the resulting strong interaction broadens the electronic level of the adatom and

splits it into effective bonding and antibonding levels, completely changing its

original form.88  The Magnus approximation89 is another alternative that has been

suggested when dealing with situations involving near-degeneracy or strong

interactions. For the case of very intense laser fields, multiphoton processes

become important, and processes such as surface damage and melting need to be

considered. Such effects are beyond the scope of this review,and we restrict

ourselves to low or moderate laser powers.

There are two well-known approaches for dealing with multiphonon effects. The

first involves a Taylor expansion of the perturbation potential about the

equilibrium configuration of lattice atoms, namely

(0) 4
r (r)

A* v(° -

liv -o y r tt-0 0~ Pu V0 £  -0

(2.183)

4'



The first term leads to one-phonon transitions, the second term to two-phonon

transitions and so on, with higher-order terms getting successively more compli-

cated. While the one-phonon term describes the situation where the Debye frequency

D is larger than the "active-mode" frequency wA of the adbond quite well,
7 4 one

really needs multiphonon terms to all orders for the case where WD < wA" The

latter is impractical within the framework of the Taylor expansion of Eq. (2.183).

An alternative method, in which A* is not expanded in terms of lattice displace-

ments, employs instead a Fourier expansion of V(r) and V (0)() which converges

very quickly because of the smoothness of the potential. It can be shown that,

with

V, - Vuir v)e' 4  (2.184)

V being the volume of a unit cell over which the integration is done and q a waveu

vector in the FBZ, one can write
-o v .i''(0)°  (2.185)

(0) ~ iqi(r-R~

and

V11) - [ ,e i ~(" RZ- , (2.186)

q

so that

+ -4 -ia-.<e(0)
-r e e . (2.187)

.q£

Phonon operators to all orders are now included in the lattice sum of exponentials

involving 1A, and this form is retained throughout most of the calculation of the

transition rates. A Taylor expansion is still possible in the last stages of the

computation if one wishes to analyze the results in terms of contributions due to

one, two, three or more phonon processes.

The last term in the Hamiltonian 9Vr represents the interaction energy of ther
laser field with the effective dipole moment of the adbond. If is the momentum

of the adatom, e0 a residual effective charge residing on it, A(r,t) the vector

potential at the position of the adatom at time t. t a unit polarization vector,

Z the wave vector and wL the frequency of the laser field, we can write

A(rt)- A0 C expli(K'-oLt)) + c. c. (2.188)

(p e in + -flu p 
(2.189)

if the incoming flux of photons is large enough for absorption to dominate
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emission, the complex conjugate part (c.c.) of Eq. (2.188) can be neglected.

Having set up the total Hamiltonian, the temporal evolution of the system can

now be described in terms of occupation probabilities and transition rates for

the stationary states of-- (0). When the laser field is turned on (t=O), the system
(0)is in a state described by the Hamiltonian W0 + A*, for all subsequent times,

the Hamiltonain is V- 00) + A + W. Writing the composite zero-order state

tjiT > J{va) > as IX >, and the corresponding energy as , the zero-order

Schr6dinger equation becomes
(°1 ,> = (0) I ,> •(2.190)

In the presence of A we write the state of the system as a linear combination

of the states IX>:
(0)

-iE t/4
' = X cX(t) IX> e (2.191)

Using this expansion in the equation

(p0) + i6 (2.192)

we obtain

d Ct) = - 1 1 cX, (t) <XIAwX> e (2.193)
dt k ~ A,

Assuming the system to be initially in the state IT>,we obtain the amplitude for

finding the system in the state IX> as an infinite time-ordered series
9 0

c (t) ! s (2.194)

(t t t

I Ct) dt 1it -2 ... dt ,~t) . (2.195)

being the Dyson chronological operator which orders products of time-dependent

operators from left to right, with successively decreasing times. For example,

( t 1 ) (t 2 ) - A(2.196)
Io t 2 )  (tl 1 t2>t 1

Also I 0(t) - 1, and AW(t) ib the perturbation operator in the interaction

representation,

e AWt) -e AV-iV tA (2.197)

We retain only the a - 1 term in Eq. (2.194) to obtain the probability of

finding the system in the state IX> for t 4 m, namely,

! J:
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(0 ) 2c(t I< X jI I (t j' > j2  _t-2 0 ) 4 . t A 2( .

- (21/fi)j<XIA*T>12 6( (0) (0) (2.199)

This expression is based on assumptions inherent in a Fermi Golden rule-type

treatment, namely negligible back-transition from the excited states JX> to lower-

lying states and a finite small duration T of the weak perturbation, but one that

is larger than the lifetimes of the states IX>. For the case of A4 which does

not have a small T associated with it, the back-transitions need to be considered,

so that one uses a formula for the actual probability PX of finding the system

in a state JA> of the type

= (0) ( (0 .) p ) - W(0) (X ) p 0) (2.200)

W 0)(-' ) are transition rates that may be obtained, for example, from Eq. (2.199),

where the probability is linear in time, leading to W (0 ) s which are constants.

With a configuration described by the set of values {p,(0)}, we now consider the

effects of the perturbation

*' '+ ( (2.201)

If * represents CW laser radiation, then A** and W must be considered as acting
r r()

simultaneously. For the sake of simplicity we assume that the probability P(0)

can be factored into one referring to the phonons and another referring to the

adbond,
(0O) P(0) (0)
S ji P{va} (2.202)

An expression for the total transition rate W( ,X) can then be obtained in

analogy with Eq. (2.199):
2

WX - Pt. (0) (0)3 4~) 6(~) (0))(203

Here PJj-* is the probability of finding the adbond state kiajr> after the laser
field * is turned on and can in turn be obtained by a procedure similar to thatr
used in deriving PX )

For the sake of simplicity, we make the following notational substitutions:

SLajfl> --o le> ('excited' adbond state)
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I a'ji'I> ---b (g>'ground' adbond state)

I fva}> - l i> ('initial' phonon state)

1O> ---. If> ('final' phonon state)

Dropping all superscript zeros, Eq. (2.203) then becomes

W(fg-ie) - 27T(.~PP (ieIA~Tjfg) 126(,f-(2.204)

Since the quantities of interest are the rates of transition between adbond states,

a summation over all initial and final phonon states Ii> and If> can be performed

to give a rate denoted by W(g+e). The probabilities P.i and Pf can be written as

Z Be-i ndz ae-affrespectively, where a=(kBTs) 1 adZ -i--Tetr

involving the probabilities can then be written as

(P i Pe P fPg3 = Z, (e-'E P e -e-' f P 9 (2.205)

= Ze '- (P e-P e BAFeg) ,(2.206)

where

AF eg -6 9=hw . (2.207)

In writing Eq. (2.206) we have used the fact that, because of the delta function,

w e m u s t h a v e E - E E -
2 2 8

f i e g

Finally, we make the substitution

P eg~ (Pe - Pg e egj1 (2.209)

to obtain

W(go-e) - I7Z e- P (ie tA*Ifg) 12 6 AE g - (F-f-Eil} (2.210)

Using the Fourier expansion of AW, Eq. (2.187), in Eq. (2.210), we have

(d e ;VA -ic R Z f) (f e -j ,t eA X i/ flAfeg[fE±j) (2.211)
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Explicit time dependence can now be introduced by utilizing the delta-function

representation
0-

eg- (fi]) (2pi) -  dt (2.212)

Incorporating the phonon energy difference portion of the integrand into the first

phonon matrix element, one obtains

" 0(ile V V If> (2.213)

Exploiting completeness of the phonon states,

I if)(fI - 1 ,(2.214)

and the definitions

~ (0) +- Ut (2.215)

fje -ele'° -f+ , (2.216)

the transition rate can be written as

W(e) - h-2  * v1 v.. f P e. ..
. q q,

X Idt exp(iwegt) Z81 e i exp -i4-'U(t)-Ij exp ij'-_U.,(0)- .i] (2.217)

Of the four terms in the phonon operator, only the product of exponentials con-

tributes to the diagonal matrix element. The constant terms lead to a delta

function with argument weg when the Fourier transform is taken, and do not corre-

spond to a transition. The individual exponentials involve operators which, on the

whole, create or annihilate at least one phonon, as seen from the form of u", Eq.

(2.166), and therefore have no diagonal matrix elements. The weighted mean of the

surviving phonon operators, from the last term within square brackets, represents

an ensemble average

z8je i 1exp-iA-11,(t)3exp~i4 -'All (0)] Ii? = (\exp-ij.UP(t)]expCi4'.u~ (
2. (2.218)

whose evaluation has been discussed extensively in the literature. 91  From the

linearity of the operators u with respect to the creation and annihilation

• "
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and alb ' it follows that (A,B1 is a c-number, where A and B are the exponents

in the ensemble average, i.e.,

=_ -(2.219)

E(t) (2.220)

Thus,

exp(A) exp(5) = exp(A4) exp{(1/2)([A,8]1 (2.221)

and

)) (XP[it+4.j( ]> (2.222)

For operators e linear in harmonic oscillator creation/annihilation operators, we
have

9 2

((exp U00 = exp [(1/2)«4>>T (2.223)

T being the temperature. Use of the above leads to the results
50'70'93

ex tt['J~,(q q ) + q~ tt.' (2.224)

where

W,(,4') (1/2)<(((. )2 + (4i,.t,2)> (2.225)

is a Debye-Waller-like factor, and

is a correlation function involving the atomic displacements at sites £,R' at times

t and 0. The transition rate, Eq. (2.217), then becomes

W- ,-..e --,i 2_ (o) ±(0)
W~~)= Xvj vj, f -4 gf P -ex .R.(R

qq

' J dt exp[iegt - W ,(qI) + "
'

lq " ,(t).4h] . (2.227)

The clear factorization of the rate expression into two components, one depending

on the properties of the adbond and the other on those of the solid, is an

attractive feature of this formalism. The basis of this separation lies in the

treatment of momentum transfer and energy transfer as independent variables9 4 via

the Fourier expansion of AW.

The correlation function can be written in terms of specific collective

properties of the phonons by using Eq. (2.166):

C'
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ub exp [it R-RHrIiep~w~(( 1t-,o(0 (fi/2M ) e .,.kx

+ e , (2.228)

where % is the Bose function -1

f8~wJk)}(2.229)

One can utilize the quasicontinuous nature of the phonon band structure to replace

the summation over wave vectors in Eq. (2.228) with an integration over k-space,

NV I

* lira F(k) = dk F(k) , (2.230)

where V is the volume of the crystal, to obtain

fi u +b (' b

161T M b Wb(k) 1i ] . (. t-

+ 2F%3 co[ (k) ( (2.231)

From Eq. (2.227), W(g-e) is seen to involve the time Fourier transform of

exp 1 (t). If a cumulants-type expansion is reasonable, the first-order term

will dominate. For this case, a convenient expression can be obtained for the

Fourier transform, namely, 
85

OD5

dt~xrit1 '4 F i 'k%It LPegx ' Ci t (t) - [f u fiweg)+lI. sgn(cweg) b k(k

14 exp iU.~j~ ) [g -b c~k] (2.232)

Higher-order terms involve Fourier transforms of ,",,)n with n>l. Clearly, the

one-phonon term (n-i) dominates when II/a 2 <<, where a is a typical lattice

parameter. Evaluation of individual higher-order terms can be simplified by ex-

pressing W(g"e) as a Taylor expansion in k, (t). One proceeds by writing

W (q-e) !_2 t.]dt expfliWegt1 FUI (2.233)



IT

70

and
1 29

F . ,(o) + &&..,.,+ 1

1 ] 2 Zi

en- 1 (2.234)

I 0

( ,F') being Cartesian indices (x,y,z). The transition rate becomes85

V012[anF ml
W(g-e) = (n1)l P '(W ) (2.235)n=l Pn,X,C' eg) ;n,,

-0
where p is the Fourier transform of 9A

Pn,U&', (Weg) = (27)-l dt e t u&(t) (2.236)

Use of the relationship

I dWiF W(fl (f2 ) - F (fl-f 2)  (2.237)

where F,(f) is the Fourier transform of f(t) at w,
oo

FW(f) - (2w)- I Jdt f(t) e' , (2.238)

gives a useful recursion relation between the p's:

Pn+ltI, m(Weg) w,, PnitZ&i(') P 19  , '(WagW) (2.239)

In developing Eq. (2.227) for the transition rate, the two-dimensional

periodicity along the xy-plam has not been explicitly exploited. Important

physical effects and simplifications of the formalism are associated with this

periodicity, some of which we now examine.

(0)-. inE.(215)
The potential. The nature of the potentials V (r) and V(r) in Eqs. (2.150).

(2.151), (2.185) and (2.186) is very different along the z-direction as compared

to that along the xy-plane. Both must approach a constant for large z and be
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essentially oscillatory on the xy-plane near the surface. It may also be

necessary to allow for different contributions to the potentials due to ions at or

near the surface and those deep in the bulk. Formally, the latter is accomplished

by affixing an extra index to the pair potentials in Eqs. (2.150) and (2.151),

namely, v(0)1 .+ v (0o))
(0) (r) z (2.240)'O)

-V() - v. (2.241)

Inclusion of these effects is probably most practical for purposes of a

phenomenological description of LSSP. Writing Eqs. (2.185) and (2.186) in the

forms

v (r) . e e V. el-P (2.242)
q (0)1 -(0) qr

and

V(r) e -iQX e -iq z v. (2.243)

qz z.t q

the summation over 0) in Eq. (2.242) reduces to , with -(,qz) and a a

primitive 2D reciprocal lattice vector in the plane of the surface. Such a re-

duction does not take place in Eq. (2.243) because the are not fixed vectors.

Because of the smallness of the atomic displacements from equilibrium, it !3

reasonable to use a sharply peaked (Gaussian or Lorentzian) function DT(Q), with

the peak at - , to replace the summation over in Eq. (2.243). Eqs. (2.242)

and (2.243) may therefore be written as

6(.~ v 4 [0{ ~ ±. (2.244)

and

V('r) XIV [!{()e ~'v] e (2.245)

The term P4() represents the "inelasticity" of the transition process viewed as a
Gt scattering event, namely the departure from purely diffractive scattering described

by 6(") in Eq. (2.244). The averaging procedure implied in the use of Va( )is

not always appropriate. In particular, if the characteristic time scale of the
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overall relaxation process is comparable to or smaller than a typical period of

vibration of the atoms in the solid, no such averaging is possible. Examination of

Eqs. (2.211) - (2.217) with the aim of applying the forms (2.244) and (2.245) of

the potential reveals a substantial simplification by allowing a reduction of the

swumations over and R£, to those over only z, and z,. This is an important

step in establishing the connection between three-dimensional and one-dimensional

treatments of LSSP.
-i/2+ +ei-t

Polarization eigenvectors. The terms N /2(k)ei in Eq. (2.166) represent

components of the eigenvectors of the dynamical matrix in the harmonic approxi-

mation.8 5 The z-component of t must clearly be complex in order for the displace-

ment function to damp out for z>>O. The displacement operator may then be written

as

-I- - b (k~fleik zz
up-(2 fI' I[ I *k K e [a, + a%..ej . (2.246)

Assjming a knowledge of the form of wb(k), the expression in curly brackets

depends only on b, I and z., all dependence on kz having been absorbed in the

summation. This represents another point at which a phenomological approach could

be applied effectively, since a model for wb(t) could be introduced along with

assumptions regarding the range of values for k .z
4..

Models for dispersion. In addition to eb(t), a knowledge of w(t) is necessary for

actual evaluation of W(g-e). Detailed information on the form of _b(k ) is avail-

able from experimental and theoretical studies of a number of systems, but for the

present semiquantitative study, a model such as the Einstein or Debye model may

suffice. In the former, phonon dispersion is entirely suppressed by assuming the

form

wb(k) - W0  , a constant, (2.247)

which neglects all correlations between displacements of different lattice atoms,

and by ascribing a single vibrational frequency to all points t on all branches b.

This model precludes energy transfer over a range of energies but does provide the

simplest picture of phonon band structure. The Debye model, on the other hand,

assumes a linear dispersion

% 1 (k) - v k (2.248)

independently of branch index, and thereby allows for energy transfer over a

(quasi-) continuous range. The use of Eq. (2.248) in conjunction with assumptions

of isotropy and simple cubic structure reduces the expression for (t) and the

--7
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in

Fourier transforms of 1L' (t) to computationally convenient forms.

(ii) Desorption and migration. The theory of laser-stimulated excitation can be

applied to the dynamics of desorption and migration by specifying appropriate

variables such as the mean square displacement <R2> or a threshold energy beyond

which the adspecies shall be considered desorbed (or 'free'). There have been only

a few attempts to apply theoretical methods to these problems due to the inherent

difficulty associated with the many-body nature of the heterogeneous system. We

shall review some of the quantum statistical techniques applied to these problems.
In an early attempt, Slutsky and George 9 5 modeled the adbond as a truncated

harmonic oscillator at the end of a linear chain, and considered the adatom de-

sorbed when it reached the uppermost level. Couplings to acoustic phonon modes of

the surface lattice and to the external coherent radiation field were represented

in a second quantized form of the Hamiltonian. With at a the creation/annihilaticn

) operators for the adbond, the thermal average of the mean number of quanta at time

<n(t)> = <<at(t)a(t)>> , (2.249)

was obtained in a simple form. Since the anharmonicity of an actual potential will

cause saturation for higher occupation states, the model of a harmonic oscillator

overestimates the efficiency of the laser stimulation.

Some of these limitations were dealt with in the work of Lin and George,30 where

multiphoton effects, multiphonon effects and anharmonicity were considered within

a quantum-stochastic treatment. A variety of line-broadening mechanisms were in-

voked to account for low-level excitation where anharmonicity and laser-adbond

frequency mismatch have to be compensated for. In an associated calculation31 not

directly applied to desorption, feedback between the phonon modes and the adbond

was studied, and selective energy absorption was seen to peak at the same time for

a range of values of the energy relaxation rate Y1. For some values of Y1,

selective excitation was seen to initially drop and later pick up, suggesting a

feedback mechanism in operation.

Other calculations of laser-stimulated desorption 24 ,25, 96 have employed either a

Morse potential 2 5 , 9 6 or a square-well potential. 24 Up to this stage, numerical

calculations of LSSP which provide agreement with experiment to within one, two or

even three orders of magnitude are considered acceptable! Details of the

potentials therefore do not have a profound influence on the relative accuracy of

the results. In the model of Jedrzejek et al., 25 the adatom is considered desorbed

if it occupies one of the continuum states if the Morse potential between the

adatom and the outermost atom of a linear chain. The occupation probability

..................................,j
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Pn for a state In> is obtained by solving a master equation

nn
S (n-m) Pm W- W(u*-n)Pn(t)] (2.250)

where W(n4m) is the total transition rate taken to be a simple sum of the rates

due to phonons and the laser field as independent driving forces,

W(n-m) - iPhonon (n+) + Wlaser (n4m) . (2.251)
74

Evaluation of the former has been discussed previously. A golden rule form is

used for Wl se r (n+m) and as in most other calculations, a linewidth r misns
ascribed to the transition. Estimates of the first mean passage time97 to the

continuum states as a function of laser power lead to the conclusion that, for CO/

Cu, laser intensities of the order of 1010 W/cm2 are needed. Similarly, in a

purely classical calculation of laser-induced desorption of 0 from Si and H from

Pb, threshold intensities greater than 108 W/cm2 were obtained.9 8 These results

are fundamentally different from those of Lin et al. 30 An important physical

mechanism which must be considered in laser-induced desorption is laser heating

of the phonon modes and a feedback of energy to the adbond. This is manifested

through the addition of an interference term in Eq. (2.251), and a first step in

this direction to include the synergistic photon-phonon effect has been

taken. 
35,99 ,1

00

In dealing with the problem of laser-stimulated migration of excited adspecies,

we begin with the dynamical Hamiltonian
4 2

H(t) - H0(QIQ 2 ,-.Qj) + I Vkk , (Ql#Q2 . .*Qj)c tck, + HA(t) , (2.252)
k,k' AF

where H0 is the unperturbed Hamiltonian of the system (with normal coordinates Qj),

Vk (Qj) is the lattice-site-dependent interaction potential of the system, and

ck and c are the site-operators of the Bloch states jk> and <k' j, respectively,
k k

which can be expressed in terms of Wannier functions in the site-representation as

c k>- t k ei nln> , (2.253)

k+ n

ck,- <k'I - e m<m I  (2.254)
Vim

Taylor expansion of the interaction potential, namely

........... L ow
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0Qj - 0v.,, _ __Q, .. 4) V o+ 1 i, + ... ' (2.2"5)

gives us the general forms for the intramolecular couplings, p being the order of

the multiphonon processes. Using the second-quantization expression of Eq. (2.255)

and the Wannier site representation in Eqs. (2.253) and (2.254), we obtain, from

Eq. (2.252), the microscopic model Hamiltonian as follows:

0 0 0
H(t) - Ho + Hi +H H + H2 + H3 + H4 + HAF(t) (2.256a)

HO a HB0 . fi H , (2.256b)
3 n

H' X n c t c (b +bj)+ I Y ctc (a++a) + n. Z ctc (at+a)(b t+b (2.256c)
nc nj i i nbjnbn)n nj n n n J

H- c t c , (2.256d)
1 nm

H K ctc(at+a) (2.256e)
2 mn

H3  G3 c t c (b +b.) (2.256f)
3 n~m nm 

H4 I Winc tc (at +a)(b+b.) + [higher-order terms], (2.256g)4 nom n nm 3

Ar(t) = V(t) K c c (a t+a) (2.256h)

j
The coupling parameters Xnj, Yn Zn J Knm, Gn  and W are related to the

derivatives of the interaction potential V(Qj) by

GJm - F Xn -Fn a (2.257a)

(21

W -F Z -F Y 2.5c
mu rm nj nnI(M AQ ~(.5c

0

1n nm-( n nm A

w P V -0V e (2.257d)
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I L/2mA A  , /2mj . (2.257e)

The last term,H AF-Eq. (2.256h), describes the active-mode/laser-field interaction

in which

V(t) - F/(2 WAl (U;E) cos(Wt) (2.257f)

Important features of H(t) are: (i) the ground state site energy of the adspecies

E0 is perturbed by H ,which includes changes in site n due to direct interactions

with the lattice and due to active-mode excitation, as well as an indirect
0

interaction with the phonons via the active mode; (ii) the terms HC and H1 repre-

sent parallel motion of the adspecies, jr1 2 in H, being related to the intersite

transition probability from site n to site m due to coherent motion; (iii) the

terms H2 and H3 represent the perpendicular vibrational-motion-induced intersite

transitions due to the active mode A and the bath modes B of the adspecies/surface

system,respectively; (iv) H4 is the A and B mode coupling-induced intersite

transition; (v) finally, the excitation of the active mode, governed by HAF(t),

provides the dominant driving force for intersite migration of the adspecies.

For the case of chemisorption on a lattice site, the equilibrium position of

the adspecies is shifted due to the distortion of the lattice. In this case the

adspecies-phonon interaction is very strong and perturbation theory cannot be used.

It is possible, however, to use a canonical transformation to go to lattice-dressed
o a t .
perators A , A , B' B and C C which take into account the shifted equilibrium

n n i j nn 71
position of the adspecies and the lattice distortion. By employing the canonical

transformation

Q - e q e , (2.258)

where Q stands for the dressed operator of q (q may be a , a b., b, c or c),

the generator of the transformation is given by

S c tc [ct(at-a) +B(b-bj)] (2.259)

where an and Bnj are chosen as functions of the coupling constants, X n and Yn, so

that the total energy of the system is minimized, i.e., 3H/aet - 3H/38 - 0.

The transformed total Hamiltonian of Eq. (2.256) in general is very complicated and

will not be presented here. Instead, we investigate a simple case in which only

the single-phonon coupling is included. The following model Hamiltonian written

in terms of dressed operators is considered:

H(t) H0 + HAB + H + H AF(t) , (2.260a)
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0 W Eo"IoC' tC n Wf" At A + *W , (2.260b)

njj
H - A C tC + , (2.260c)'AB nd , rm tn n ))

I - A C t A , (2.260d)

t)- V(t) 4"t 1A T+AJ (2.260e)
n;9M

W ff wA - 2C A tA ,(2.260f)

where is the distortion energy, 0 and n are the transformed coupling
0 herm nj

constants of W and Z respectively, and V(t) is the transformed laser-adspecies

coupling constant of V(t)Kn. Employing the many-body technique described in the

previous sections, we obtain the equation of motion for the ensemble average

<<<... >>> (over the A and B modes and the lattice site coordinates) of the active

(A) mode and the lattice site transition probability:

d<A>t - i<Weff(t)> <A> - iV(t)- [Yl+Y2+YM)/2] <A> , (2.261a)

Here y2 is a dephasirng factor and y1 is the phonon-coupling-iniduced damping

factor given by1 0 0 '1 0 1

1 ((( (t A1D + _VWA> ,~y)(n> (2.261b)

- - (2.261b)

where YB is the decay factor of the phonon (9) modes due to anharmonic coupling.

In Eq. (2.262a) and in what follows we assume only nearest-neighbor contributions,

namely, Zn. ni W- Z , etc. The migration-induced damping factor Y is given
b10 Ms n,n~l 

M
101

12 I l2[(YB /2)cos Xj) - ,jain (dX.2)YN . 2 L 2(263

I + (Y,/2)

where Xj and d are the wavelength of the B-mode vibration and the lattice spacing
-j
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of the substrate. We note that both y and YM are given by a Lorentzian form

which is due to the finite lifetime of the phonon modes, B B , and thus give us a
99

nonzero relaxation rate even for 'eff>j*. A simplified model which assumes an

infinite phonon lifetime, i.e., yB=0 , results in delta functions for both y1 and

i.e., Yl,M-IF(WJ)6(Wj-Weff), which are zero for single-phonon processes when

Weff>wj. 95

From the coupled equations (Eq. (2.261)], we can calculate the lattice site

occupation probability (<Pn(t)>>, which in turn gives us the mean-square displace-

went of the adspecies

(R2 (t))- d2 1 n2( <P n(t)> >  , (2.264)
n

and the diffusion (migration) coefficient

D = lim [2 (t ]  (2.265)

The site probability function ((Pn(t))) is in general not analytically available

due to the time-dependent excitation ((nA(t)> which is nonlinearly coupled

(Eq. (2.260e)). For tractable results, we investigate the large damping case,

Yl 2 >>YM such that the adspecies reaches its steady-state excitation

X -<nA(t)>> s which is governed by a cubic equation (Eq. (2.25)]. Using thisX (n(0 S. S.

steady-state excitation, we may solve Eq. (2.261c) to obtain the quasi-steady-state

site probability

<(Pn(t)>) = In (4Wt)e- 4W t  (2.266)

where I is a modified Bessel function and
n

w- (2BX+ X + R (2.267)

Thus, from Eq. (2.264) and using the recursion relation for the modified Beasel

functions, we obtain the mean-square displacement, which in turn yields the

migration coefficient
2

D - 4Wd (2.268)

This is related to the laser intensity by a power law, IP, I:p<3, since WaIP p-1

for low excitations for the harmonic case, E*0, and p-l/3 for high excitations.

we note that the above laser-enhanced migration constant, DEW, is governed by an

Arrhenius form for the high-temperature limit, kT>>hwj,

- 0 exp I, k (2.269)

w h re [( 2 + + 2  A

E + I' (2.270)

_- .
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is the "activation energy" for migration. We finally note that the above

Arrhenius form for the migration coefficient resulting from single-phonon

processes is not necessarily true for multiphonon processes.
10 0'10 1

B. Electronic degrees of freedom

(i) Excitation to surface states and charge transfer. In a crystalline solid, the

energy levels associated with the electrons form a number of quasicontinuous

valence and conduction bands. For a metal the upper valence band and lower con-

duction band overlap; in a semiconductor, these two bands are separated by an

energy gap. The electron charge density associated with these energy bands is

more or less uniformly distributed throughout the crystal. With the addition of a

surface, however, a number of additional bands and local states are formed.
10 2

These surface bands correspond to a charge density localized in the surface region.

By using a laser to excite electrons to or from these surface bands, the surface

charge density could be increased or decreased.1 0 3 The subsequent Coulombic inter-
104

action with an adspecies could enhance various surface processes.

Experimental studies 10 5 of synchrotron radiation on metal surfaces have already

demonstrated that photon-stimulated desorption can occur through surface electronic

excitation. This desorption process involves the excitation of a core electron of

the adspecies, which is localized in the surface region, to the bulk energy bands
106

of the solid. The resultant Coulombic repulsion is the cause of the desorption.
.107

Studies have also been conducted on the effects of laser radiation on the bulk

electronic states. Using experimental band structures and time-dependent pertur-

bation theory, the photon absorption rate for electronic states has been calculated

for a variety of semiconductors. This rate can be quite appreciable for resonant

laser frequencies.

In the following two sections, we will extend these time-dependent perturbation

studies of the photon absorption processes to include surface states. Using a

simple one-dimensional (lD) model, we will first examine the bulk electronic

structure of a semiconductor. From this starting point, we will then show the

origin of the surface states and calculate the photon absorption rate for exci-

tation to these states. The effect on adspecies interaction will then be address-

ed. Finally, in the second section we will extend the theory developed in the

first section for semiconductors to the case of a metal. This discussion will

center around the effect of lattice vibrations on the photon absorption process.

(a) Semiconductors. For 1D wide-band semiconductors of infinite extent, the
v108valence electron wave function can be written in terms of plane waves:
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i A (k-Gz.)kZ) AG e ( (2.271)
G

where k is the electron wave number, G is a reciprocal lattice wave vector, a is

the lattice constant, and z is the direction parallel to the chain. Atoms are

positioned at integer values of z/a. The plaie waves with G*O represent the

lattice scattering of the electron.

If the semiconductor chain is now truncated at z = a/2, the surface can reflect

the plane waves; subsequently, the wave function within the semiconductor can now

be written l!A i(k-G) [z a- -i(k-G)[z-2S

(Z) L e + B e 2 (2.272)

or in trigonometric representation

A' sin[Ik-G) I + ekG] (2.273)

wLth the phae factor ek G being obtained by matching with the wave function ex-

tprnal to the semiconductor:

: -qk- Z-
~k-.G(z2)

4k(Z) = CG e (2.274)
G

Eqs. ,2.273) and (2.274) can be written in compact form as

!k(z) = O G k-G (z) , (2.275)
G

where POkG(z) are the solutions to the particle in a square well potential:

kG (Z)- sin k-G) z-2 + k (2.276)

for Z < a/2 and

(Z) = sink_ e - 2J (2.277)

for z > a/2, with

qk-G - 2W - (k-G)2 (2.278)

tan 0k-G - G-k , (2.279)qk-G

where L is the length of the crystal and W is the sum of the work function and the

--, " - I .. l--
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Fermi energy. If we assume

0 --- (2.280)

our basis state will be odd in k; on the other hand, if

I-G --- ) T (2.281)

our basis state will be even in k.

In principle, the sum in Eq. (2.275) is over an infinite number of terms; how-

ever, the coefficients become very small as G increases. Consequently, within the

nearly-free-electron (NFE) approximation,10 8 we need only consider the lowest-

order terms in G. Eq. (2.275) will now become

-k
(z )  c tk k(z) + "k-g $k-g(z) (2.282)

where g - 27/a. To obtain the parameters in Eq. (2.282), we must solve the

schr6dinger equation:

_- + V(z 4)k(z) = E k(z) (2.283)
d2

with
N

V(z) I v(z+ia) , (2.284)

where N is the number of ions in the chain and v(ZLa) is the screened potential

for the ion at lattice site La. Inserting Eq. (2.282) into (2.283) yields the

I secular equations:

tk - Ek] + cLk-g Vg =0 (2.285a)

kg +k - . 0 (2.285b)

where

Vg - <k-glV(z)lk> . (2.286)

We will assume that the matrix element, Vg, is independent of all k but the Fermi

wavenumber kF (on-Fermi-surface approximation). 109

To have a non-zero solution for the parameters in Eq. (2.285), the energy must

be

{ [2+(kg )2] 2[k(k-g) ] + 4 E (2.287)

where the energy gap is given by

t.A4 46 -_..

I, _ ---- _ . ...... ..
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Eg - 2Vg (2.288)

After normalization the wave function is now

ik (z) =k(z) + V k- (2.289)2 2
2

Eqs. (2.287) and (2.289) constitute the solutions for the energies and wave

functions for the bulk electrons in a ID semiconductor. In our model we assume

that V > 0. If the wave function, Eq. (2.289), is not to vanish at the top or
,Iottom of the energy range, the basis states should be odd in k for the lower

branch and even for the upper branch of the energy. The range of the phase

factors. Eqs. (2.280) and (2.281), will be chosen accordingly.

The energy dispersion relation for this system is depicted in Fig. 13. The

valence band (V) and the conduction band (C) are, respectively, the minus and plus

branch solutions to Eq. (2.287). If the system is unexcited, the electronic

;litdes are completely occupied up to the top of the valence band and all other

states are emptied.

In addition to this discussion of the bulk states, we are also interested in the

surface electronic states. To find these surface states the energy expression,

Eq. (2.287), is analyzed for other solutions.1 0 2 It can be seen that real energies

can be obtained if the electron wave number is

k=2+ i (2.290)

I

C S T

V

i 
k

Fig. 13. Dispersion relationship in complex crystal momentum space (k+iK) for a
finite linear chain. The valence, surface and conduction bands are labeled V, S
and C, respectively.

~~-j
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Inserting this into Eq. (2.287) we obtain

,[(_2 2 ~ 22
E K ± F K , (2.291)

where the range in values are for

ICI 0--1 - (2.292)
g

To obtain the wave function for the surface states on the inside of the semi-

conductor, we insert Eq. (2.290) into our bulk wave function expansion, Eq.

(2.273):

(z) A, sing -U + iK z -2-++i8 , (2.293)
K G i(2 i 2 aG

where we have assumed that since k is complex it is reasonable by Eq. (2.279) that

the phase factor is also complex:

8, - +i8 . (2.294)
K,G

If we now put Eq. (2.293) into exponential form and separate the real and

imaginary components, we get

FiF~.G' (z.~3~] -K (..~+8] -.[(G] (Z-!I+J] K('Z-!]+0

41K (Z) =AG ee e e ]*(2.295)
where a factor of 2i was absorbed into the coefficients.

Since there is no preferred surface, we expect

a2 (z a 2

jK(ZW )I1 - I * K i-LJ - (2.296)

For this to be valid, the wave function, Eq. (2.295), placed in this expression

will yield terms like

cosh(28) - cos(2) - cosh[2(8-KL)] - cos[(G-g)L+2] . (2.297)

But g and G are reciprocal lattice vectors; therefore,

(G-g) L - n2nT , (2.298)

where n is an integer. Consequently, Eq. (2.297) becomes

cosh(28) - cosh(28-2KL) (2.299)

This condition only holds if



L (2.300)

102
Following Lundqvist's lead, we will also assume

< 0 . (2.301)

Using Eqs. (2.300) and (2.301) in Eq. (2.297), we note that near the surface

at z - a/2 the first term in our wave function is large and the second term is

very small. Near the other surface at z - a/2-L, the reverse is true. Thus the

first term of Eq. (2.295) yields information on the surface electronic charge

near z - a/2 and the second term, near z - L-a/2. Since we are only interested in

the surface at z = a/2 and we assume L is very large, our surface wave function

becomes

[(.G (Z-!]+a] -K 2-

4K(z) AG e e , (2.302)
G

where the exponentials depending on L have been absorbed into the coefficients.

It should be noted that, unlike the bulk wave function expansion, Eq. (2.273),

the terms in this expression are not solutions to the particle in the square well

since they would produce imaginary energies. Furthermore, the wave functions

given by Eq. (2.302) are not acceptable bulk wave functions since they cannot be
102

put into the Bloch form:10 2
ikz

k(Z) = e u.(z) , (2.303)

where uk(z) has the periodicity of the lattice. The previously obtained bulk

solutions, Eq. (2.282) with Eq. (2.277), can be cased into a form similar to this

by adding the complex conjugate to the right side of Eq. (2.303).

To complete our solution we need to obtain the coefficients of Eq. (2.302).

First, as for the bulk series, we truncate the surface series to two terms via the

NFE approximation. 1 0 8 Then we insert our wave function into the Schrodinger

equation to obtain our surface secular equation. This gives us an internal wave

function similar in form to Eq. (2.289):{t 1~~ 1 2}0
PK (z) - C a e+ • e

where C is the normalization constant. Using Eqs. (2.288) and (2.291), the co-

efficient of the second term can be written

I . . < t . i lIl... J ik m 
*

.
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E - i< -i26

Vg - -e (2.305)

Inserting this into Eq. (2.304) and factoring, the wave function becomes

'(z) - Cs sin [( z + e 2 2.306)

where

+ -t+6 (2.307)
K

and we have absorbed all factored constants into C
s

To obtain the solution external to the semiconductor, we assume that the surface

electrons feel a constant potential for z > 2. Consequently,

2 )

(z) = C sin@ e, (2.308)

where

q(W-EK) (2.309)

and

tan e - :1LK. (2.310)

To be consistent with our bulk wave functions which are odd in k for the valence

band and even for the conduction band, the surface phase factor has the range

• . -(2.311)

for the lower surface

IOK , - (- (2.312)KI 2

for the upper surface energy branch.

The normalization constant may be obtained by assuming the charge density is

symmetric about the center of the semiconductor chain:

I dz I'K(z)2 ' (2.313)

Using the surface wave function in this expression, we obtain

I Yt .,,_._ - .
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1

2 2
C e L -1 sine r -- ) L2CS2K i(e1 234

s- 2K +__q_ _2_2

For our purposes, L is considered very large (infinite) and K is non-zero and

negative, Eq. (2.301). Therefore 1

sin 2K I 2KcOs(2eK) - g sin(20
s (2K) 2 2 . (2.315)

The surface states are completely determined by Eqs. (2.306), (2.309) and

(2.315). The dispersion relation for the surface band(s) is illustrated in Fig.

13. Note that the surface band extends into the complex plane. Also, there is no

surface state at the branch point which occurs near the center of the band:

S _ (E2] g 
(2.316)

If we now shine a laser on our 1D semiconductor, we can induce electronic

transitions from the bulk valence band to the surface states. To determine the

transition rate, an integral of the following form must be evaluated:

HKk(t) <KI-A-'k> , (2.317)

where I is the vector potential of the laser radiation and is the momentum

operator of the electron. Under the dipole approximation and assuming the laser

is polarized parallel to the chain, H Kk(t) becomes

1

t .(2TI 2 e - dt j (KI k) .(2.318)

where I is the laser intensity and w is the angular frequency.

The bulk wave function, Eq. (2.289), and the surface wave function, Eq. (2.306),

can be written in the form

Wk(z) = eikz uk(z) - e-ikz u(:} (2.319)

and

W e (z) z 2]' ( u (z) (2.320)
K KC

where

- _ __i.-

S
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ika 21

U.(z) - -i e 2 iek + E-v- eiek-g (2.321)

1(2L) 1+- k-k,/2

and

U Z i - (2.322)

Both uk(z) and u (z) have the periodicity of the lattice. Using Eqs. (2.319) and
K

(2.320), the integral in Eq. (2.318) now becomes

a a

1C 1:22z 21( -ei (22] z.'(Z) 1 ~e ikz i 2 ~ (~
2 2

(z d [ -ikz 1
xe UK dZ'a u.k(z (2.323)

where we have assumed that for large L the contribution of the exponential tails,

Eq. (2.289) with Eq. (2.277) and Eq. (2.308), to the integral will be negligible.

The integration in Eq. (2.323) can be rewritten
SN-1 2

dz . I dz .. •(2.324)
-_L X - - U

If we change the variable of integration to z+La and exploit the periodicity of

Uk( ) and u K(), we obtain

N-1 ii-ki ,a K Ba N-1 i (k-f3a ea (2.325)
1 0 6 B-1IC 2 e tB

1-0 i-o
where

a

dB =Jz e ul(Z) [ (2.326)

The transition probability is related to the square of Eq. (2.325):

W-r
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2 N-1 N-1 i(-k) -m a (L+m)a - N- i i(k-l)(L+M aK(9+m)a B*a *2
M . i i e 2 BB I I e 2 e B + c.c.

m-O 9-0 M-a X-0 (2.327)

where c.c. indicates the complex conjugate. If we change the range of summation,

the sums in front of the first integral become

N-i N-i1
K(N-I)a -2 2 i -k] -m a eM+.)a

s 1 = e e e (2.328)

1-N 1-N
~2 ~2

Changing the summation variables to s - 9+m and d - i-m, we get

N-1 i [2-kda N-i7 1d a
S1 = e (N-1)a i e ( , (2.329)

d-l-N sml-N+Idl

where the prime signifies a count with an increment of 2. If N is very large, the

sum over s will be only significantly affected by large values of d. Therefore

for large N, we can approximate this function by

N-1i 9-'2klda N-1(g
$ K(N-l)a 1 ei2-kd e e s a  eK( _ a K(1-N)a N-1 i 2-k da

S1ed-l-N s-i-N 2 Ka-1 dN
I (2.330)

Taking the limit as N 
goes to infinity, the 

function takes the form

-W l 2]a , (2.331)I 1 a ~2tKa

where 6(k-2f3 is the Dirac delta function.

The sums in front of the second integral of Eq. (2.327) are

N-i N-i i kj-2[+ma) (t+m)a (2.332)

The maximum value for this expression occurs at k-1 and falls off rapidly as you

move from this point. Since for k*2 terms containing the sum of Eq. (2.332) are2
the only contribution to Eq. (2.327), the total must be much smaller than the

value for k-9. Furthermore, it should be noted that when k-2 or K-0, the first
2 2

sum and the second are equal. Therefore, we will assume

S2 z S1  (2.333)

Combining Eqs. (2.323), (2.325), (2.327), (2.331) and (2.333), we obtain
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M -2  2e7 k-9 )2a (2.334)

a 2 1-e 2Ka

where the subscript zero indicates integration over the first unit cell. From Eq.

(2.334), we see that the transition from a bulk to a surface state is only permit-

ted if the real part of the crystal momentum, k, remains unchanged. This selecticn

rule is not too surprising since it is an exact restriction on laser-induced

transitions between bulk bands.110  Furthermore, for our model, it confines us to
the top of the valence band where the density of states is a maximum (infinite)

and the laser frequency needed for a transition is a minimum.

To first order, the transition rate from the valence band to the surface band is

T - L - k Jdt. H (2.335)

where

Wk EK - Ek  (2.336)

Converting the sums to integrals, we get

g E/g t W iW (t ) 2
T ,- - [ ] 2  dkj/d 1 dt' Hk(t)e " (2.337)

t IToE O I0 o

Using Eq. (2.318), we can perform the integration over t' and take the limit as
t goes to infinity

9 -Eg/g 2
T - 11 IgL Ik odK 6(Udk-\) (2.338)13 dk 1 \f2k/ d(zk

Using the selection rule, Eq. (2.334), along with Eq. (2.323), this can be
$

simplified to

TdK 6 - z2.>k-,) (2.339)
1 E 2jO 1  - e•2K

g 0

After evaluating the integral over K, the expression reduces to

i

...... , .. .... *~ , C~*. .. : '.:" '



90

137 2 2Ka dE 2.340)
gI

where K in Eq. (2.340) refers to the state obeying the resonance condition:

defineE 9 - K2 ± (E~ K2] (2.341)

We now define the absorption cross section, 0:

a S WT/I (2.342)

Using the wave functions, Eqs. (2.289) and (2.306), in Eq. (2.340) and taking the

limit as L goes to infinity, the cross section becomes 2

2 4 ~Ka 2K cos' e'+ + 2K2 sinOK cosO + g2

2 1-e C2  1dK .. 2
137 EgWK2 1+eKa s dE 2 + g2

(2.343)

With Eq. (2.291) we can also readily evaluate the derivative:

dK E2E -g 2K 2 2.44

jK 2 K2 E2 _ g 2K 2] g

Eqs. (2.343) and (2.344) constitute the cross section for electronic transitionsIfrom the valence band to the surface band. Although this cross section is quite

complicated, we can readily deduce its behavior by analyzing the expressions at

various limits.

If the exciting laser radiation is at a frequency near 1E [Eq. (2.316)], where2 g
K - -E /g, Eq. (2.344) will vanish, and thus

a WE /2 =0 . (2.345)

This is exactly what one would expect since this mid-gap energy is a branch

point at which no surface states exist.

If the laser is near a frequency of 0 or Eg, the cross section becomes

aW_0 137 2 2 2 (29 - 34612

2

6..
I 1
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At both extremes, K-0 and Eqs. (2.346) and (2.347) diverge. This occurs because

at the surface band edges the charge associated with the surface states becomes

more and more delocalized throughout the lattice until at K=0, the charge is com-

pletely delocalized. At this point the surface states become bulk states, and

instead of cross sections, one should consider absorption coefficients.

Fig. 14 depicts the behavior of the cross section over the entire frequency

range. The values for the lattice constant, a-2.35 A, and the energy gap,

E - 1.17 eV, were taken to be those of silicon.
11

To illustrate what laser power is required for a certain surface absorption

rate, we will consider exciting a surface state at 0.4 E . This corresponds to a15 g
laser frequency of about 10 Hz which falls in the IR. From Fig. 14, the cross
section is about 3 A2. If we assume our laser intensity is 1 W/cm2, the

transition rate is about 4 x 10- 5 photons absorbed per second. Since an electron

is excited for each photon absorbed and the effective charge depth, 11/2K1
[see Eq. (2.306)1, is about 8 atomic layers, the transition rate is about 5 x 10

-6

electrons per surface atom per second. To obtain the transition rate per unit

surface area, we divide by the surface area of the end atom, whereby we obtain

1 10 photons absorbed per cm2 per sec. This figure is quite large considering the

low power of the laser. Consequently, using such a laser can lead to appreciable

charge excitation in the surface region.

Since our ultimate goal is to use the laser to charge the surface, we wish to

excite states with the smallest charge depth and consequently the largest K.

I0

5

0 .2 .4 .6 A! Lo

-j Fig. 14. Absorption cross section for surface states, a, in 2 versus the fre-

quency of the exciting laser radiation.

I I I I I J I ....................... -4 !
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For silicon at maximum value of K the surface charge depth is about 3 lattice

constants. Since the charge depth increases as we move away from this mid-gap

region, we are mostly interested in laser frequencies near 0.5 E . As seen ing
Fig 14, the cross section is quite substantial near the mid-gap region, and

subsequently, we could readily increase the surface charge by using a laser of

moderate intensity. Even at W - 0.4 E we have seen that the charge depth isg
only about 8 lattice parameters, and we could excite this state with a very low

power laser. Consequently, we would expect a laser tuned to a frequency around

0.5 E to be an effective controller of surface charge.

To examine the effect of this excitation on the surface charge, we can readily

obtain the electron density profile of our excited system.104 To obtain this
density, we must sum the individual densities of all occupied states:

n(z) - I I0k(z)2 , (2.348)
k

where the wave functions were previously given in Eqs. (2.289) and (2.306).

Changing to an integral we obtain

n(z)- SL d k(z) , (2.349)
(271T)

where we have assumed that the wave function had plane wave components parallel to

the surface. If we now convert to cylindrical coordinates, we can readily write

I the electron charge density for the ground state:

2L f( ) 12 • 350)

(Z) a J2dk (-k j (2.350)

where the subscript 0 indicates ground state and k. is the Fermi crystal momentum

with energy F. In our model for a semiconductor, this corresponds to the state

at the top of the valence band where

k - (2.351)F

EF - Eql (2.352)
F 2Lt);

Using Eq. (2.289) in Eq. (2.350) with parameters typical of silicon,111 ,1 12 we

have calculated the ground state electron density profile and have shown our

results by the solid line in Fig. 15. The oscillation of the charge as one goes

into the bulk of the crystal is due to the concentration of the electron charge

around the ions at the lattice points (s - nal n - 0,-1-2---). The exponential



93

tail on the vacuum side is typical of electron density profiles for a truncated

system.

If the semiconductor is now exposed to a laser with an energy less than the

band gap, the ground state electron density profile will be altered due to excited

surface states. Using the definition of the charge density, Eq. (2.348), we can

readily write down an expression for our new charge density:

n(z) - n0 (z) - k(Z)I + 140K(Z) ( (2.353)

where n (z) refers to the previously calculated ground state density, Eq. (2.350).
0

We have assumed that our laser excited an electron from valence band state k to

surface state K. From our previous cross section calculation, we have discovered

the selection rule that requires the conservation of the real part of the crystal

momentum in surface state excitations. Consequently the valence state that will

be excited lies at the top of the valence band with k = 2. From Eq. (2.289) we
2

can determine the density of this bulk state:

P(Z) 12 .+ i z! (2.354a)L2
22

for the internal density, and

-2q a-
2 4 92 2

( sin 2 6e (2.354b)
I_

j2 2

for outside the crystal. From this equation we see that the charge of the bulk

2.0-

• . I ' I
I  

III

Fig. 15. Electron density distribution at the surface. The solid line
represents the ground electronic state, and the dashed line represents the systemjwith the excited surface state K - 0.5(2 v 9/g) in the lower branch.

. .~ '1 * -~i
"
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state that is being excited goes as 1/L. Therefore, for a very large system we

would in effect be taking only an infinitesimal amount of charge from everywhere In

the semiconductor to populate the surface state. Consequently, for a large
system, the charge of one bulk state is negligible in Eq. (2.353). The total

density of the excited state then becomes

2
n(z) - no(z) + ItP(z)I . (2.355)

Using Eq. (2.308) we can obtain the density contribution from surface state K:

(Z) 2 = C2 sin2[(Z) ! + e 2 ) (2.356a)

for z < S and
2-2

I 2 " cs sin8 e (2.356b)

a

for z < !. Inserting Eq. (2.356) into Eq. (2.355) along with the results for the
ground state, Eq. (2.350), one obtains the solution for the charge density of the

excited state of the semiconductor. We have calculated this density for

K M -0.5 E /g in the lower branch surface and depicted the results by the dashed

line in Fig. 15. As can be seen by this plot, the charge in the excited surface

state produces a total electronic charge in the surface region that is twice as

great as the bulk average. If one excites surface states closer to the branch

point near the gap center [see Eq. (2.316)], the charge concentration in the

first few layers of the surface will increase up to about thrice the average

density.

If there is a charged adspecies above the surface, this excess charge in the

surface region can produce a very large effect on the adspecies-surface inter-

action. This interactic.i can be written classically as

U(zI) -- dT n(z) v(r) (2.357a)

with 1
r - x+ +(z - ZI) , (2.357b)

where v(r) is the electron-ion potential of the adspecies at zI. We will assume
93

that v(r) is Couloubic in nature with Thomas-Fermi screening:

v(r) - , * (2.358a)r

where A is the screening parameter,

I____ I ___,
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2 -61M (2. 358b)

and Z is the charge on the adspecies. A more appropriate screening function would

be similar to those developed for finite metals, 113 but this simple model,

Eq. (2.358), should serve to give us the magnitude of the interaction of the

surface with the adspecies. Since the Thomas-Fermi screening parameter depends on

the average bulk electron density, r, we would expect this parameter to be much

larger than one calculated based on the average charge density between an adatom

and the surface. Consequently, the use of a screening parameter based on the bulk

electron density would underestimate the actual interaction.

Bearing this limitation in mind, Eqs. (2.357) and (2.358) are combined and the

integration is performed in the x and y directions to give

U~1  -- 21rZ 00-Xlz'-ziI
u(zI )  J - d z n(z) e (2.359)

Inserting the excited state density, Eq. (2.355), into this expression, we obtain

21Z- z-zlI
Ulz I ) - - Z dz n0(z) e - SUlz) . (2.360)

The first term in this equation represents the interaction of the adspecies with

the semiconductor in the ground state and will not be considered here. The second

term is the change in the potential induced by the excited surface state and is

given by

S27rZ Fd 0()2 -1Z-ZI1
•U(z) r a (2.361)

Inserting the expression for the density contribution from the surface state, Eq.

(2.356), we get

27rZC2  rr( 6-2K(z-)
U(z 1 ) d z sin 2(z_! e

+ sin z ( Kf . (2.362)

2

After much algebra, this equation can be reduced to yield an interaction of the

form

-777
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SU (ZZ) -)-zz -2q~zz
- B (K) - ( (2.363)

Z

where

2(K 2, 2 1 (2.364)
A() C 2ie 2 sin 2e (2c-,\)cos (2O6 )-gsin(280 2.64

(2K-X) + g J

and
2 2~C 2 4rr sine q,a

B(K) - s in . (2.365)
~(2qK) 2_X2

Eq. (2.363) has been evaluated for a number of surface states, and the results

are plotted in Fig. 16. As one moves to larger IKI (energies near the gap center),

the curves clearly show that both the magnitude and the range of the surface

charge interaction increase. Since we have found that the surface charge also in-

creases under these circumstances, this is exactly what is expect. All curves,

however, show an appreciable contribution to the potential produced by the surface

( states with KJi > 0.01 Eg/g.

In order to give a etter comparison of the surface charge interaction among the

various surface states, we have plotted the change in potential at zI-a for all

surface states in Fig. 17. The upper branch states are at a higher energy

(positive sign in Eq. (2.291)] than the lower branch states. Therefore, the ex-

ponential tail of the charge density and, subsequently, the interaction is slightly

greater.

to-
7.

I &U 3O L8

Fig. 16. The magnitude of the surface interaction potential (in millihartrees)
at various distances from the surface. The solid line represents the system with

excited state K % -(2V 9 /g), the dashed line, K -- 0.5(2Vg/g)1 and the dotted line,
-- 0.1(2Vg/), all in the lower energy branch.

- . . .. '
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Thus we see that an appreciable effect on an adspecies-surface interaction can

be produced by use of a laser to localize electronic charge in the surface region.

If the adspecies is positively charged, the possibility of adsorption is enhanced;

on the other hand, if the adspecies is negative, desorption can be induced. In a

more complete model of a semiconductor, both occupied and empty surface states

could exist in the ground state. A laser could then be used to excite holes as

well as electrons to these surface states and thus adsorption or desorption could

be enhanced for the sam charged adspecies.

Because the concentration of charge is so large in the surface region, one would

expect the effective interaction length to be greater than that indicated by Fig.

16. The exponential decay of the surface interaction is probably an artifact of

the assumed Thomas-Fermi screening. The dielectric screening problem would have

to be addressed more carefully in order to improve these results.

The surface charge is also large enough that it is conceivable that such a large

charge displacement could lead to a lattice rearrangement. Such an effect could

lower the charge in the surface region. On the other hand, the new surface states

would probably be more stable and, subsequently, have a larger lifetime. To study

these effects a self-consistent field calculation would have to be performed.

The major limitation of the above model, however, is its one-dimensionality. 7he

three-dimensional interaction potential may be quite complex depending not only on

the distance from the surface but also on the position of the adspecies with

respect to the plane of the surface. Also, most common semiconductors have
il1

indirect band-gaps (the minimum in the conduction band is not over the maximum

in the valence band), and the form of the wave function in such a gap is not

300

1(21) 10-

0 .5 .

iv,

Fig. 17. The magnitude of the surface interaction potential (in Millihartrees) at
a distance zJ-a for the system with various excited surface states. The solid line
represents surface states in the lower energy branch; the dashed line, the upper
energy branch.

--------------------------------------.
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readily obtainable from a 1D model. Finally, in a real semiconductor, the surface

states are not necessarily confined to the gap between the valence and conduction

bands.
1 1 4

Nonetheless, our contention that lasers can be used to control surface charge

density in semiconductors and, subsequently, enhance surface processes has been

substantiated. Since metals also play an important role in catalysis, the effect

of lasers on metal surfaces will also be examined in terms of a simple model.

(b) Metals. As with wide-band semiconductors, the valence electron wave function

of a metal of infinite extent can be written as a sum of plane waves, Eq. (2.271).

Consequently, if we model a metal as a truncated 1D chain, we will obtain equations

for the bulk and surface wave functions and their related energies which are of the

same forms as the wave functions, Eqs. (2.289), (2.306) and (2.308), and the

energies, Eqs. (2.287) and (2.291), of our model semiconductor. The band

structure for the metal can also be illustrated by Fig. 13. However, whereas the

V band is the valence band of the semiconductor, for the metal the V band corre-

sponds to an overlapping valence and conduction band that is characteristic of a

metal. Consequently, for the metal the lower band is only partly occupied. The C

band would correspond to an upper conduction band.

For example, in the case of sodium11l the top of the lower band lies at 3.8 eV,

j but the band is only occupied up to 3.1 eV in the ground state. Also, whereas the

energy gap is about 1 eV for most common semiconductors, for sodium the energy gap

is 0.45 eV.

If we shine a laser on our metal, we wish to see if we can also populate the

surface state and thus increase the surface charge. However, because of the

selection rule we previously developed,10 3 we must conserve the real part of the

crystal momentum when we excite electrons into the surface states. But there are

no occupied bulk states with real momentum at or near I which is the real momentum
2

of the surface state. To overcome this problem we suggest not only exciting the

electrons with a laser but also with the vibrational energy of the crystal. The

laser photons would supply us with the energy we need to got to the surface states,

and the phonons would supply the needed crystal momentum. 11 5

For our model system, we write the Schrbdinger equation

i 3 - H(t)*(z,t) (2.366)

H(t) - H0 + H f(t) + HP(t) , (2.367)

fwhere H0 in the electronic Hamiltonian of our system in the ground state, H (t) is

the coupling of the electrons to the laser field, and HP(t) is the coupling of the

electrons to the phonons. We expand our wave function in terms of the stationary

.4
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states

O(z,t) - X Ck(t) Ok z) aEt (2.368)

k

Using this expression in Eq. (2.366) and assuming that C k(0) - 0 for k > k and

ck(0) 1 for k < k , we obtain

c k t) - -i dt, {(kHWf()I. + k (2.369)

where

-k k - 1k (2.370)

To get our transition rate to first order, we would sum the square of Eq. (2.369)
rall initial states k' fr 0 to kand o all final states k -g+i forover al nta ttsk rom 0 oF n overalfiastesk--qifo

all surface states K. However, the field coupling term between k and k' would

vanish since the wavenumber of the field is too small to assure conservation of

crystal momentum. The phonon coupling term will conserve this momentum, but the

energy of a phonon (for sodium, maximum phonon energy is about 0.015 ev)is not

sufficient to assure conservation of energy. Consequently, the phonon term and

the overall transition rate in first-order perturbation theory is zero. Therefore,

we will have to carry our calculations to higher order.

Using Eq. (2.369) in Eq. (2.368) and then inserting into the Schr;dinger

equation, Eq. (2.366), we obtain the second-order solution:

e r"+ 'k ee, 12.371)

where e-iw~ ,t
SHt) = - p  2.372)

Wf being the frequency of the laser field and wp the frequency of the phonon.

The matrix elemnts are defined :

Jodt, kf, -'Wft"(2.373)

where ---

If we multiply Eq. (2.371) out, we will obtain terms that are second order in the
field, , h ,k., and in the phonons , d,k.. Againif we onsider initial

states " lying below the Fermi energy and final states as in the surface band,

. . . ... .. . .. . . .. .. .. . ... Hk k" .. . . ........ "'I lk**.. ' - *' . . ; '

states.... .. k" lying beo..eFem..eg...fna.tae..a n h uraead
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the second-order field terms will vanish since they do not conserve crystal momen-

tum, and the second-order phonon terms will vanish since they do not conserve

energy. Using this fact, we can simplify Eq. (2.371):

ft ~ 1  to L t

- -•~HJ ~ Jt et "- Jdt" *L kp

tt
-(t dt' akue~ P j t i(wkkkw-wf)tu . (2.374)I "

The first term in this equation represents the electron being excited by a phonon

from initial state k" below the Fermi energy to an intermediate state k' which

lies between the Fermi level and the top of the lower band. From here, the

electron is excited to the final state kc in the surface band by a photon. The

second term involves a photon exciting an electron from the initial state Ic"

below the Fermi level to an intermediate state kc' which lies in the upper con-

duction band. From there we are scattered into the final surface state Ic by a

phonon. Since both the conduction band and the upper conduction fall off rapidly

as you iove away from the surface state region (see Fig. 13), the excitation of an

electron to the upper conduction band involves a large energy mismatch. The sub-
isequent scattering by a phonon inotefnlstate wlasoivvea large

t o thtiao wl lo ov

~energy mismatch since the intermediate state can be very high in the upper con-duction band. t would p the second term in (2.374) to be

very small when compared to the first termand thus we will disregard it.

Assuming the time, t becomes very large, we can now find the modulus of

Eq. (2.374) :

lx i +2r(235

sTo proceed further we must first evaluate

When the system is at rest, the electronic amiltonian an be written as

w ti 2
d b H0ere w d + svat-er , (2.376)

where v(-zf) is the screened potential between the electron at position z and

the ion at equilibrium position n. If there is a disturbance in the lattice

(a phonon), the ion will change position to c+u(t). Consequently, our

eamiltonian will become



101

H~t)+ V(ZzZt~ut(t)) .(2.377)

If we ass&em the lattice is not too greatly perturbed by the phonon, we can expand

the potential in terms of a first-order Taylor expansion:

H(t) - H0 - v' (Z-si) ut(t) , (2.378)

where v' (z-zt) is the gradient of the electron-ion potential evaluated at

equilibrium. The displacement, ujt(t), can be written as

-t t

u (t) - u t P (2.379)

Using this :in E.q. (2.372), we got

HP - v'(z-zg) up (2.380)

and the subsequent matrix element will be

Uj dz *kz). 'zz) lz 231

where *k(z) is the eigenfunction of H0 . If we neglect the exponential tail of the

wave function by assuming the system is very large, we can approximate the wave

function in a metal by (see Eq. (2.289)1
1

4k(z) - L e .
i k . (2.382)

Using this in Eq. (2.381), we obtain

i(k-k') v(k-k') Lei, (2.383)

where v(k-k') is the (k-k')-th component of the Fourier transform of the electron-

ion potential. It is also convenient to express the displacement magnitude, Ut, in

term of the phonon annihilation, a(K), and creation, at(K), operators: 110

i 1i 2w-i a W(K + e a (K) (2.384)

where M is the mass of the lattice atom and K is the wavevector of the phonon. We

can now write for the phonon matrix element

/

'77
ii. *
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1 1
H~fil)4~3 (-k'v~]-z) l -[K (k-k')z

(2.385)
But the sums over the exponentials are delta functions. Therefore,

1- .±E2(j~~j ' ak-k") + •tkk] . 236

Inserting this into Eq. (2.375) and then averaging over the eigenstates of the

photion number operator, In (K)>, we will obtain terms of the form

<n(K)ja(K)a(K')jn(K)> - 0 (2.387a)

<n (K)at(K)atW(K)In(K)> - 0 (2.387b)

<n(K)Ia(K)at(K') + at(K)a(K1)In(K)>= 6KK,(2n(K)+l (2.387c)

where 6K is the Kronecker delta function and n(K) is the population of phonon

state K. We have assumed that K - k-k'. Using Eqs. (2.386) and (2.387) in

Eq. (2.375), we obtain

(n(W I k t Ck tn(K)) - -1M, k W P , - w~ 2k 2W Sk, -W P)
(f 2  2 2[H. (k-k") 2v(k'-k") 2 2n (k'-k") +11

k 
2 w p (Wlk - )

If we assume the frequency of our exciting radiation is nearly equal (expect for

the phonon contribution) to the difference between the frequencies of the initial

and final states, the second term in Eq. (2.388) will vanish. If we now sum over

all initial and final states in Eq. (2.388), we will obtain the total second-

order transition rate:

T a (21rl (k ,-k") 2 v(k'-k") 2 2n(k'-k")+l) l~ )swW.f-P (2.389)
kc' kc" 2w P(wOk'kd _ )2k

The field matrix element can be readily evaluated using Eqs. (2.318), (2.334) and

V (2.372)z

f [2. f 2 2 2 2.3 9)

where we have replaced the final-state wave number k, which equals + iK*, with2 it
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the surface state index K.

As we did in going from Eq. (2.335) to Eq. (2.337), the sums can be converted

to integrals. Then, if we use Eq. (2.390), we obtain for the transition rate

T dk" T(1) , (2.391)

2w (W -
-2

where T (1  K, is the first-order transition rate between state and surface state

1 21 2K induced by the laser field and is given by Eq. (2.340). In obtaining T
we made use of the fact that w <<wf. Converting to an integral over the freq 'y

p ffrqec
of the initial state, Eq. (2.391) now becomes

T a I k dk" ] 2 2- T(1),(IC,2 . (2.392)

~21Tj !k" P h(~ F

2
SSince the initial states are not near the band edge, we can write Ese Eq. (2.287)1

wk. - (k")2 /2 (2.393a)

W 2" 
(2.393b)

&7k TOc"

If we assume a thermal distribution of phonons and electrons, we need only consider

the integral within an interval kBTL (TL is the lattice temperature) around the

Fermi energy.108  At room temperature, this interval is small and thus we can

consider the integrand to be constant:

T 2: I l)(kc])L. (2.394)

Since T is the only term that depends on
we would expect that the cross section based on this transition rate would be

qualitatively similar to that depicted in Fig. 14 with the distance from the Fermi

energy to the top of the band added to the laser frequency.

For sodium at room temperature we can readily evaluate Eq. (2.394):

T - 2.38 x 10 "4 T(1) (,C2 . (2.395)
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Since the various physical constants for sodium are not significantly different

from those for silicon, we would expect the first-order rates to be roughly compa-

rable. From the last section and Fig. 14, we see that a significant photon ab-

sorption in silicon could be induced with a low-power laser (1 to 10 W/cm2 ). From

Eq. (2.394), therefore, we would expect to produce a similar effect in sodium with

a moderate power laser (10 to 100 kW/cm 2 ). Consequently, as with a semiconductor,

we would expect a laser to act as an efficient controller of surface charge in a
metal. Subsequent interactions with adspecies would likewise be effected.

Not only does this formalism apply to metals but also to semiconductors when one

is considering the excitation of electronic states that do not have the same real

momentum as the surface states. When there is a direct band gap as in our model,

this would be insignificant when compared to direct transitions. But, in tI .tse

of the semiconductor with indirect energy gaps, the electron-phonon couplin4 ,uld

play an important role in surface state excitation.

For a more realistic picture of a *etal we would also have to go to a thrt

dimensional model. Furthermore, not only the phonon effect on the electrons

considered here), but also the electron effect on the phonons would have to be

studied. Nonetheless, we have clearly demonstrated that lasers can effect the

surface charge on metals as well as semiconductors.

(ii) Predissociation. A process which is central to a wide range of chemical

reactions catalyzed by a metal surface is the dissociation of one of the reactants,

or partial dissociation due to bond stretching, as it adsorbs onto the surface.

Another process which has received attention is laser-induced dissociation of gas-

phase molecules. We want to entertain the idea of synergistic catalysis, where the

surface and the laser combine to increase the dissociation rate above that caused

by the surface alone or the laser alone. The situation we shall consider is laser-

induced predissociation, where a visible or UV laser couples the ground electronic

state of a diatomic molecule to an excited electronic state in which the molecule

can dissociate. Two specific effects of the surface will be included: the surface

magnetic field (SMF) and the phonon "continuum." The former can be as strong as

107 G, such as in the case of ferromagnetic materials,I 16 and gives rise to Zeeman

splitting of the electronic states of the diatomic molecule.117 The latter is

referred to as a "continuum" since the phonon levels are assumed to be much more

closely spaced than the vibrational levels of the adsorbing diatomic molecule.

The combined effects of the laser and the surface can probably be most easily

visualized in terms of Fig. 18. This is a schematic drawing of the multiwell con-
figuration among the laser-dressed and SMF-split electronic levels of H2 adsorbed

on a metal surface, where R is the internuclear separation. Rc is the point of an

avoided crossing, and Rt is the inner classical turning point on the ground

KV
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electronic state embedded in the phonon continuum (represented symbolically by the

vertical slashes). The laser-dressing gives rise to the three avoided crossings

indicated by the primed quantities Vi, (due to spin-electric dipole and spin-

magnetic quadrupole coupling). The fourth avoided crossing designated by the un-

primed quantity V12 is due to just the SMF. Each V designates a vibrational

quasibound well, where V1, is the diabatic well V1 + -w and V.. is the adiabatic

well generated from diabatic curves i and j. Each p. designates a local transition

probability.

The term "predissociation" is used in the sense that the laser-shifted ground

singlet state (shifted up by the photon energy Aw) is coupled to the continuum of

the repulsive triplet states. Strictly speaking, one could call this type-I pre-

dissociation, 118 where the laser induces crossings (or more appropriately, avoided

crossings) between the sinqlet and each of the triplet states. A similar situation

exists for the case of NO, with a modification due to the different spin multi-

plicities of the states as shown in Fig. 19. (the vertical slashes indicating tne

phonon continuum have been omitted). For a sufficiently high combination of the

initial vibrational state and tw, the dressed 2n state becomes predissociative by

radiative coupling to the continuum of the 2E + state.

Starting from the picture provided by Figs. 18 and 19, we have derived a semi-

classical expression for the total width r(and hence predissociative rate).
119 ,1 20

The idea is to use classical trajectories as input for a description of the inter-

ference of the quasibound nuclear motion iri the multiwell system. The widths,

energies and shifts for each of the wells can be obtained by locating the poles of

EV

H2

R

Fig. 18. Schematic drawing of the multiwell configuration among the laser-dressed
and SMF-split electronic levels of H2 adsorbed on a metal surface. See the text
for further details.

I 4 ,
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the S-matrix element for oscillatory motion within the wells. 12 1 We use the
electronic-field representation (combined photon-dressing and SMF-splitting)

for the electronic states and limit our consideration to single-photon absorption.

For a combination of N wells, the semiclassical S-matrix takes the form

N 20 nj
SN = I exp 2iCir) n(wj) , (2.396)

j-1 n.-0

where a. is the classical action integral for a single pass in the jth well, andJ
wj>O is the appropriate multiplicative combination of pj and (1-pj) factors in the

jth well, which can be calculated by the Landau-Zener formula or the Miller-George
123semiclassical approach. By locating the poles in Eq. (2.396) we obtain the

following expression for the width r for the quasibound levels in the jth well:

rj - -log(wj)/a;j (2.397)

where a' , the energy derivative of the action integral, is approximately equal to
oj

the constant Tr/hV. (\, =exact resonance frequency in the jth well). The total
1 3

width is then given as
N

1 wir i  , (2.398)
m i=l

where is the multiplicity of the ground electronic state, and

N
(wi/m) (2.399)

E

R

Fig. 19. Schematic drawing of the multiwell configuration among the laser-dressed
and SMF-split electronic levels of NO adsorbed on a metal surface.

t ....
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To incorporate the effects of surface-phonon-admolecule coupling, we assume the

admolecule to be embedded in a phonon-bath continuum with a finite probability of

transition (energy loss) into the continuum from any internuclear distance R of the

potential. This in turn decreases the local transition probability p at each

avoided crossing, where we are assuming the transition to the phonon continuum to

be irreversible. The decreased or modified nrobability can be expressed as

p.injpj , (2.400)

where n. is a survival factor such that ni=1 represents a phonon-free situation and
J j

n .-0 represents a situation where the energy has leaked totally into the phonon)
bath. A formal expression is available for n., involving a phase integral and a

phonon-induced level width,119 but is not shown here since we shall simply124

parametrize n in our calculations. [Another approach described elsehwere for in-

corporating phonon coupling is to carry out a "double dressing", where the elec-

tronic curves of the admolecule are simultaneously photon-dressed and phonon-

dressed.]

In Fig. 20 we present qualitative results for r, the total width in the presence

of the laser and the SMF, for the case where all nli. Along the vertical axis we

are actually plotting the unitless quantity co, where we assume a'j to be the same

for each well, i.e., ai' a a; = constant. For a comparative study we have con-

sidered different cases corresponding to different ratios of the p.'s. These

probabilities may be written as p. = exp(-), where 0. is a dynamical factor

to H
K&18

/

CO

I I *
G2 4 A. *

Fig. 20. Relative dissociation rates of adsorbed H2 in a phonon-free situation,
resulting from the combined action of the laser and the SMF (dotted curves). el is
proportional to the laser power density, and the ratios refer to 01:82:e. The

* dashed curve is for gas-phase laser-induced predissociation.

a'I
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dependent on the strength of the radiative coupling, velocity at the avoided cros-

sing and the geometry of the crossing curves, and can be taken to the proportional

to the laser power density. The results for H2 are plotted versus 611 where the

lowest (dashed) curve represents gas-phase laser-induced Predissociation and the

upper (dotted) ones are for the adsorbed molecule subjected to the combined action

of the laser and the SMF. Four different ratios of 6 1:e2:3 are indicated (we

have not accounted for the fourth avoided crossing at the far right in Fig. 18).

The main conclusion to be drawn from Fig. 20 is that the interference of the quasir

bound nuclear motion in the multiwell configuration due to the SMF serves to en-

hance the dissociation rate of H2 for all laser powers. For the simplest case

where all p. are equal, we estimate an enhancement due to the SMF of about 20%
2

for a laser power density of 100 MM/cm . Similar results are obtained for NO,

although with a somewhat greater enhancement. For 021 where the ground state is a

triplet and the upper is a singlet, there is a diminution at low laser powers

which becomes an enhancement as the power increases.

In Fig. 21 we present qualitative results for a'F, the predissociation rate in
0

the presence of the laser, SMF and phonons (dotted curves), and for comparison we

also display the gas-phase laser-induced rate (dashed curve) and the phonon-free

laser/SM-induced rate,(solid curve). We have taken the survival factors Yj. to be

the same at all the avoided crossings, given as exp(-8) where >0, where the

various values of 8 are indicated in parentheses after the ratios. We see that the

phonon coupling results in a dramatic enhancement at low laser power densities as

compared to the phonon-free situation. However, higher laser powers dampen the

[ Ht

Fig. 21. Relative dissociation rates of N2 in the presence of the laser, SNF and
phonon continuum (dotted curves). The dashed curve is for gas-phase laser-induced
predissociation, and the solid curve is for laser/SMF-induced predissociation.
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local probabilities more, and the net result is a lowering of the dissociation

rate. Although we have not included a feedback from the phonons to the admolecule,

i.e., we assume just a damping of the local probabilities due to phonon coupling,

most likely such feedback would not reverse the trend observed in Fig. 21.

(iii) Ionization - thermionic and photoelectric. We shall now study another aspect

of laser-induced transient effects, namely the emission of electrons from laser-

heated surfaces. To calculate the laser-generated current density, J, we employ

the generalized Richardson equation
12 5'12 6

N+I
J" n (2.401)

n-0

with

w =n a IanlA(1-R)n T 2F(6) , (2.402)
4n nO 0

where Jn represents the current density produced by pure thermionic emission for

n=O and by n-photon ionization for n>0; A and A are the Richardson constant and
n

the appropriate coefficient related to the matrix element of the quantum n-photon

process, respectively; F(6) is the Fowler function with argument 6=nhv- , where

hv and are the photon energy and system work function; and N is the largest

integer less than 0/hv. Ts is the surface temperature calculated from the heat

diffusion equation

3T
-. D- ,_ (2.403)

with initial and boundary conditions

T(z,0) = To  (2.404a)

K Jal -(l-R)I(zt) (2.404b)
az O z=O

where D and K are the thermal diffusivity and the thermal conductivity and are

related by D-K/Pc, P and c being the mass density and the specific heat of the

solid; TO is the initial temperature of the system; R is the refractivity of the

surface; and I(z,t) represents the intensity of the incident laser pulse.

Employing the Green's function technique, we obtain an integral expression for
127,128

the surface temperature, i.e., solution of the diffusion equation at z-O,

I0 (1-R) PR 2

T (r,0,t) - T + (7 exp _ dt' g(t-t')/Ctl) (2.405)
s 0 TT d j gtt)(

For an arbitrary laser pulse shape, the above integration must be carried out

numerically. For the case of a rectangular pulse with constant intensity

n- --
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1 0 and duration tp, the integration can be performed analytically. This yields
an expression for the maximum surface temperature T. M 210 (1-R)t /(nKpc) , which,

S p
however, tends to overestimate actual experimental results. We therefore propose

triangular pulses to better approximate an actual pulse, e.g., a Gaussian or an

asymmetric long-tail pulse. The effect of the triangular pulse shape on the

temperature and its time delay can be analyzed by means of an exact analytic

solution of the diffusion equation.

A triangular temporal dependence of the laser pulse takes the form

g(t) = 10t/a, 0 t:a (2.406a)

= I (a+b-t)/b, a~tSa+b (2.406b)
0

= 0, otherwise (2.406c)

which has a peak intensity at t-tl=a with a pulse energy (a+b)I0/2, and whose

shape is governed by the ratio between a and b. From Eq. (2.405), the surface

temperature generated by the above triangular pulse can be given exactly, in the

form
1 2 6

T (r,0,t) - T + B(r)I T (t), 0 tSb (2.407a)
s 0 0 1

3
= TO + B(r) 10  T(t), a~t5a+b (2.407b)

4
= T0 + B(r)I 0 ii Ti(t), a+b~t (2.407c)

where

B(r) - (I-R)exp[-(r/d)21/(TKpc)i (2.408a)

TI(t) - 4t/3a , (2.408b)

T2 ( t) = -2(t-a) (2t+a)/3a ,(2.408c)

T 3(t) - 2(t-a) - 4(t-a) i/3b , (2.408d)

T4(t) 4 4(t-a-b) /3b . (2.408e)

By setting P T5 (r,4t)/Zt1 t *-0 we obtain the rise time for the maximum surface
* 2 2 2

temperature, t2=aL /(L -1), which then gives us the delay time by means of the

simple expression
At - iMa( )(2.409)

where L - (a+b)/b and tI - a is the rise time of the peak laser intensity.

To show the effect of the pulse shape on the surface temperature, we plot the

analytical results for the rectangular and triangular pulses and the numerical

result for a Gaussian pulse (with FWHM-18.8 ns) in Fig. 22. It is seen that when
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the laser pulse is Gaussian, the surface temperature is overestimated by a rectan-

gular pulse but is well approximated by a triangular pulse with equal sides (a-b).

Note that in the surface temperature profiles the laser energies (fg(t)dt) of

different pulses are all the same, and the surface temperatures are normalized to

the maximum value generated by a rectangular pulse.

For a low work function material, e.g., a cesiated tungsten surface with

Oz2.0 ev subjected to pulsed laser radiation with intensity I050 MW/cm 2 and

photon energy hv-1.165 eV, we may use limiting forms of the Fowler function, for

surface temperature Ts<2000 K. This results in the following expression for the

total current density from pure thermonic emission and from one- and two-photon

photoelectric effects:

J J 0 + 1 + J2 (2.410a)

with

J0 a AT 2exp(-O/kT), (2.410b)O Os s

Jl (al/a0 )I
0 (l-R)J0 exp(-hv/Ts ), (2.410c)

j - a + (Le6)2] . (2.410d)

The above equations are valid for a material with low work function or lowI
ionization energy, and hence are more applicable to metal adspecies rather thanI

o0 10 20 30 40

0 0 W30g

TIME (mmuecond)

Fig. 22. Normalized surface temperature profiles (T /T*) for rectangular (solid
S Sline-), Gaussian (dotted line ...) and triangular pulses with a- b/3 (dash- ot-

* dashed -.- ), a- b (dashed --- ) and a -3b (dash-dot-dot-dashed -.. -). T* -I t is
the maximum surface temperature generated by a rectangular pulse with duratio?
t -20 ns. The intensity profiles g(t) are also shown, where the Gaussian pulse
hs a FWHM-18.8 ns and all pulses with different shapes have the same energy
i0t " .126
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nonmetal adspecies. Note that, from the expression in Eq. (2.410), the one-

photon emission current density J1 is equivalent to that of the pure thermionic

emission J0 enhanced by a factor a110exp(hv/KTs) ,129 which is photon energy and

intensity dependent. For the two-photon process, the current density J2 is inde-

pendent of Ts provided T is sufficiently low, where the "cold" electrons gener-

ated by two-photon ionization dominate the current density. At sufficiently high

surface temperatures, we expect the pure thermionic effect to be the major compo-

nent of the total current density, and a much higher power law for the intensity

dependence, JW(t) = J0Im(t), is expected. This power law provides information

about the shape of the emitted current. For example,a Gaussian laser intensity,

I(t) = I0exp(-t
2/B2), gives a Gaussian current density, J(t) = J0exp(-t

2/B2), with

a narrower width =B/m if it follows the power law. In general, we expect an

intensity-dependent exponent, m, due to the mixture of pure thermoionic emission

and multiphoton ionization.

Fig. 23 shows the surface temperature (normalized to its peak value) generated

by a Gaussian laser pulse (at the hot spot center) and also shows the correspond-

ing current density (only the pure thermionic current is plotted). We note that

the surface temperature and the associated current profiles may be well approxi-

mated by the results generated by a triangular pulse with a - b in Eq. (2.407),

which gives the peak surface temperature T* = I0 (a+b)

J/J* LO

O.

0.4 0.6

0$ 0 .4

0.2 CO 0.2L

0
-20 -0 0 1o 20 30 40

TI ME(nanosecond)

Fig. 23. The normalized surface temperature and current density (J/J*) as a func-
tion of time generated by Gaussian pulses for [intensity(MW/cm 2 ), FWHM(ns)] - (A)
(57.73,15), (B)(50,20), (C)(40.82,30) and (D)(35.35,40). Note that all of these
pulses have the same peak surface temperature Ts , which is well approximated by Ts-
[(l-R)/(rKpc)1JI0 (2/vP.)

3a1, as in the case for an isosceles triangle.1 26
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(iv) Resonance fluorescence. The phenomenon of resonance fluorescence for a two-

level atom in the gas phase has been known for some time.1 30 However, considera-

bly less work has been done for a two-level atom near or adsorbed on a solid

surface. In the absence of a surface or when the adatom is far from the surface,

the dynamics of the population inversion and the power spectrum of the system may

be described by the usual optical Bloch equations. When a surface is present,

particularly a metal, the following factors become important: (i) nonradiative

energy relaxation of the excited adatom via electron-phonon coupling; (ii) radi-

ative spontaneous decay and stimulated emission produced by both the applied field

and the reflected field; (iii) the oscillatory behavior of the lifetime of the ad-

*atom due to the interference between the applied field and the reflected field;

(iv) the reflectivity and refraction index of the surface; (v) surface-induced

dephasing of the dipole; and (vi) the interaction between the adatom and plasmons;

as a first step, one can assume that the effects of the conduction electrons in

the metal just provide a reflected field acting back on the adatom.
130,131Combining the standard techniques for the two-level atom in the gas phase

with the many-body techniques described in the previous sections, we obtain the

surface-dressed Bloch equations (SEE): 1 3 2 ' 1 3 3

u 2 -6 0 u 0

d
v = -Y2  v + 0 .0 (2.411)

- Y -l eq

u and v are the components, in units of the transition moment, of the adatomic

dipole moment "in phase" and "in quadrature" with the applied field. w is the

population inversion, with the equilibrium value weq, where w - -1 for the
eq eq

adatom iniitally in its ground state and w - 1 for the excited state. S9
eq

I12Eo I/h is the Rabi frequency, where v12 is the electric-dipole transition

matrix element between the adatomic states Il> and 12>, and E0 is the amplitude of

the applied electric field which is assumed to have a slowly-varying envelope.

1 and i2 are the relaxation factors for the inversion and for the dipole, re-

* spectively, and A is the effective detuning of the laser field frequency with

respect to the adatomic transition frequency. These surface-dressed parameters

are related to the surface-free parameters by

?- + 6W + 6wB (2.412a)

-
2 (yB + A/2) , (2.412b)

Y2 YS + A/2 + Y2 + YR , (2.412c)

S
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where 6 - w0 - w is the surface-free detuning, A is the Einstein coefficient for

spontaneous emission, 6w, and SWB are the frequency shifts due to the applied

field and phonons, respectively, and yB and y are the phonon-induced energy (T1)-33
and phase (T2 ) relaxation rates, respectively. 3 R represents the effects of the

quantized reflected field f(d)E Re f(d) + ilmf(d),

YR = 2 j 1 2 1
2 Im f/6 , (2.413)

whose forms for the perpendicular and parallel orientations of the dipole with

respect to the surface are 134

f (d) -1 2i (2.414a)d(2d) (2d),,-j

* f1 (d R3 3 2 e2i (2.414b)

The reduced distance is d - d/- 27rd/X, where d is the distance of the adatom

from the surface and X is the wavelength of the field. R is the reflectivity of

the surface.

The steady-state population inversion is found analytically to be (for w -l)
eq

w 1 + 2 (2.415)s.s. Z2+ i2

which is sensitive to the reduced distance and dipole orientation through the

surface-dressed parameters j1' i2 and Z. We see from the above equation that the

criterion for the weak-field limit in the SBE, given by

C2 << (Z2 + 21 (2.416)

is a weaker condition than in the surface-free optical Bloch equations due to

the surface-dressed parameters. Further work is in progress in our laboratory to

obtain the power spectrum as a function of d.

3. Gas-Surface Interactions

A. Diffraction

We first present a semiclassical formalism for atom-surface scattering in the
135

absence of radiation, and then indicate how it can be extended to include the
136

effects of a laser field. We assume an atomic beam to be normally incident

-I- ,

, ... •
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(in the z-direction) on the surface, with high enough energy such that the same
equation of motion can describe the normal motion of all atoms leading to different

channels which contribute to diffraction. This assumption can be expressed as

[2 = (m2 + n2) T] << k2 , (3.1)
mn a

where a is the lattice spacing (taken to be the same in the x- and y-directions),

m and n denote the order of diffraction, imn is the reciprocal lattice vector for
the mn-channel, and k is the wave number for the incident atoms. The surface

structure is periodic in the xy-plane, and the atom-surface potential is taken to be

V(x,y,z) - V0(z) + Vl(z)[cos(27x/a) + cos(21ry/a)], (3.2)

where specific forms will be assigned shortly to V0 and V when we carry out

numerical calculations.

Due to Eq. (3.2) we can separate the motion in the z-direction from that in the
xy-plane, which we treat classically by the equation of motion

1 .2
+ 0(z) - E , (3.3)

0
2 2where P is the mass of the atom with incident energy E - 41 k /211. The incident

atom motion then satisfies a two-dimensional Schrodinger equation of the form

ii (xtyit) -I + ] + V1 z(t)I [cos(2Tx/a) + cos(2y/a) lx,y,t)7 (3.4)

Here V1 is time-dependent through z(t) which satisfies Eq. (3.3), and this time-
dependence constitutes the semiclassical nature of the present approach.

The wave function IP can be expanded in terms of diffraction states

f aXy,t)2 . Zb (t)exp(i -- iE t) ( (3.5)
mn

where i is the projection of the position vector of the incident atom onto the
surface, and En at r2 22n/2p . Substituting Eq. (3.5) into (3.4) and assuming V1 (t)

to be significant only for a short time interval over which (E(m+l)n-Emnt/ An

(Em(n+l)-Em)t/ for the important channels may be considered to be constant, we

obtain a got of coupled equations for bmn. The coefficient bmn represents the
diffraction amplitude for the mn-channel. Using the boundary condition bmn(-' a

Sm,00 we obtain the diffraction probability in the form

Jbmn(=) 12 W J2 [u (MI 2 u 1 (3.6)

where J mis the normal Bessel function of the m-th order, andm .

-~ (37
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The above theory has been applied to the Ne-W(ll0) system, where we have used

the Lennard-Jones-Devonshire potential for V0 and V1 ,

V0 (z)- D exp(-a(z-z0 )] 1exp[H -zo)]-2} (3.8a)

V (z)= -28D exp[-2(z-z0 )] , (3.8b)

with values of parameters in atomic units taken from the literature as
13 7 ,138

D = 6.3 x 10-4 , c - 0.582 and 8-0.01. The agreement of Eq. (3.6) with the re-

sults of exact close-coupling calculations1 38 is excellent, as seen by the table

below for an incident collision energy E - 2.3245 x 10- 3 hartree:

Table 1. Diffraction probabilities for Ne-W(110)

Channel 2 12 Close Couplinga
mn m n

00 0.4005 0.4016

10 0.1096 0.1099

20 0.0064 0.0061

30 0.00016 0.00014

11 0.0300 0.0299

22 0.0001 0.0001

21 0.0017 0.0017

31 0.00004 0.000036

ayinnon et al. 138

To extend this picture to atom-surface scattering in the presence of laser rad-

iation, we view the incident atom as made up of two electronic states, with a
136

separate atom-surface potential correlating to each state:

V i(x,y,z) - V 0i(z) + V li(z)[cos(2nx/a) + cos(2ry/a)], (3.9)

where the subscript i indicates the state (i=l or 2). [One can also generate

multiple potentials by allowing for electronic excitations with the sub-

strate. 82, 104 1 We envision a situation where the photon energy bw is resonant

with the potential difference V0,2 - V0,1 at some normal distance z=z r . If zr is

sufficiently large that the short-ranged potentials Vl, 1 and V1, 2 are negligibly

small, we can safely assume that the electronic excitation due to the laser and the

diffractive transition due to the surface are well separated in time, and hence can

be treated separately. Fig. 24 represents schematically the potential curves for

the two electronic states 1 and 2, where curve 1 is shifted up by MW to cross

curve 2 at z-z r A transition from 1 to 2 then involves the absorption of a photon,

such that the laser field loses one photon. We should point out here that the

laser need not be resonant with the asymptotic (z--) states of the isolated atom.
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As the atoms prepared in state 1 move toward the surface, they come to the cros-

sing point zr before diffraction occurs. A certain fraction of the atoms makes a

transition to state 2 and then undergoes diffractive scattering with the surface

as if they were prepared in state 2 with incident energy E + A (see Fig. 24). The

normalized diffraction intensities for these atoms are then given by Eq. (3.6)

with V1 in Eq. (3.7) replaced by V1, 2. For a sufficiently high laser intensity

(0/=2 or higher), an observable fraction of atoms may give diffraction patterns

characteristic of state 2, which could be different from those of state 1.

B. Phonon excitation.

We now consider a gas atom-surface collision process in the presence of laser

radiation, where the laser frequency is chosen such that all transitions except a

particular surface vibrational one, i.e., a phonon excitation, 
can be neglected.

139

The phonon can be excited by both the incident atom and the radiation. The basic

assumptions of the model are the following: (1) the gas atom interacts directly

only with the surface atom which it strikes; (2) the interaction between the gas

atom and the surface atom is given by a truncated harmonic potential characterized

by the well depth D and the interaction range b (see Fig. 25); (3) the surface

atom is connected to the remainder of the solid by a spring whose force constant is

determined by the vibrational frequency of the surface atom, with effects of

lattice relaxation on this atom represented by a frictional force; (4) only motion

perpendicular to the surface is considered; and (5) surface atom vibrations are

coupled to the laser field via a dipole moment of the form H0 + M1z, where z is

the normal displacement of the surface atom from its equilibrium position. The

I ,

Zr

Fig. 24. Schematic representation of the potential energy curves for V0,1 and
V0, 2 . N is the number of photons in the external field.

-1M
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motions of the surface and incident atoms are then treated classically (Newton's

laws), with the effects of the field represented by a classical time-dependent

driving force.

The equations of motion to be solved are given by

mgY -msW2(y-z) (3.1

2 2
m s + mYz + msWs z Mm s 2 (y-z) + MIE cos(Lt+) , (3.11)

where mg (ms ) is the mass of the gas (surface) atom; y is the displacement of the

gas atom measured from the minimum point of the gas-surface interaction potential

where z=0; E0 , wL and e denote the electric field strength, frequency and phase
of the laser radiation, respectively; w is the surface vibrational frequency; y

denotes the damping caused by lattice relaxations; and w is defined by

D -1w(yz
V(y-z) = -(y-z) 2 , 1s2( 2 (3.12)

b 22ms W(-)(.2

At time t-O, the gas atom enters the interaction region with intial velocity v0

and is subject to the harmonic potential shown in Fig. 25 until it leaves the

region at t=t1 , which is when the relative displacement y-z equals b for the first

time since t=t . Partial boundary conditions are then given by

0!

a M

Fig. 25. Schematic diagram of a gas atom incident on a surface in the presence of
* a laser field. mg and ms are the masses of the gas and solid atoms, respectively,

which are subject to a truncated harmonic potential with well depth D and inter-
4 action range b; y and z are the displacements of the gas and solid atoms, respec-

tively, from their equilibrium positions. The laser radiation is represented by
the thick arrow.

LI
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y(O) - z(O) = b, :'(O) - -v 0  , (3.13)

y(t I ) - z(tI) = b, (O) v0  (3.14)

Before the scattering occurs, i.e., for t 0, the surface atom interacts with the

laser radiation only, and z(O) and 1(0) can be found by solving Eq. (3.11) without

the driving term msw 2 (y-z). The result is

ME0

Z(O) ( cOS 1-8), (3.15)
msq

W M E
=0) L sin(1-1, (3.16)

mq
s

where 1
]t 2 2 2

q = [(Ls-%J + Y (3.17)

tana - 2 2 (3.18)

WS- L

Our task is to solve Eqs. (3.10) and (3.11) for 0<t t I under the boundary con-

ditions stated in Eqs. (3.13)-(3.18), and we adopt a perturbative approach which

is valid provided z(t) is small compared to b throughout the scattering process.

The approach involves an iterative substitution of lower-order solutions (beginning

with zero-order) to find higher-order solutions, and the first-order result for

the total energy transferred to the surface atom averaged over e is

( 1 ) (

E> 1  de dt i( 2It)Li) t) + MIE cos(,Lt+O (3.19)
0 I10

where

f(l) (t) = m W2  (1) ( i) zt (3.20)1 s y d I t ,(.0

(1)>
t >0 is a solution to

y-[t IZ]) b (3.21)

and the superscript indicates the order of a given solution. Eq. (3.19) can be

shown to have the form

<AE> (I ) . AE (I ) + <LE> + I (3.22)

gas laser (

where AE(1 1 is the first-order energy transfer in the absence of the laser,
gas

<AE>laser is the energy transfer in the absence of the gas atom,and I represents

an interference effect between the two types of transfer. I has the interesting
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result in the limiting case of small b and high v0 (but still low enough for the

perturbative treatment to be valid) that I > 0 if w > w and I < 0 if wL < w
s s

The above theory can be illustrated with the example of He-W scattering in the

presence of a laser field, with the following values of parameters: D, 65 K; b,
a13 13

0.4 A; T (helium gas temperature), 400 K; Ws' 2.494 x 10 Hz; y, 2.261 x 10 Hz;

and M1 (dipole derivative), 109 debyes/cm. The value of D is chosen according to

Ref. 140, b is chosen to fit experimental data of energy accommodation coef-

ficients, 1 4 1 and w and y are chosen according to the prescription 57 for the
s

Brownian parameters with the Debye temperature for W taken to be 330 K. The

calculated value of AE (1 ) is 2.8 x 10-4 eV, and the energy accommodation coef-
gas

ficient E is found to be

AE 
(1 )

Ot gas .1
E mgv

This is in agreement with the experimental data1 4 1 and results from the choice of

the parameter b to get such agreement. The interference term I in Table 2 below is

0.1% to 1% ofE a(1 ) ndE
gas laser*

Table 2. Results of the He-W calculation. wL is the
laser frequency, the laser intensity is taken as 10
GW/cm2 and Ea = 2.8 x 10 - 4 eV.

W L (1013 Hz) <AE> laser(10-4 eV) I (10- 4 eV)

2.706 2.94 0.0031

2.6 3.01 -0.00063

7.194 3.04 -0.0046

2.388 3.01 -0.0080

2.282 2.93 -0.013

A stronger interference can be expected for higher incident energy or laser in-

tensity, although then the perturbation treatment would fail and numerical methods

would have to be adopted to integrate the equations of motion. It is disappointing

that the laser intensity is so high (most of the processes discussed in this review

article occur with considerably lower intensities, and this raises concerns about

surface damage. While the process discussed previously for diffraction may also

require high intensities, there are laser-induced phenomena in gas-surface colli-

sions where the intensity need not be high, such as ion neutralization to be dis-

cussed later, where the laser excites electrons to surface states of the substrate

during the collision.

-A.................................................
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C. Collisional ionization and neutralization

We shall discuss first a model for collisional ionization of an adspecies by an

impinging atom, and then shall turn to a treatment of ion neutralization where an

impinging positive ion picks up an electron from a surface. There has been both

experimental14 2 and theoretical14 3 interest in Penning ionization, where metastable

He* atoms impinge on a CO-covered Pd surface resulting in electron emission from

CO. We have considered theoretically the problem of gas-phase Penning ionization
144

of He* atoms in the presence of a laser field, where photon absorption and

stimulated emission results in interesting structure in the energy spectra of the

emitted electrons. An attractive feature of this process is that there is a con-

tinuous range of laser frequencies for which this structure can be observed, since

the laser is coupling bound and continuum electronic states. Furthermore, since

this coupling can occur over a wide range of internuclear distances, lower laser

intensities should be required than for electronic bound-bound coupling (such as in

Fig. 24 where the radiative interaction is localized at z=zr).

Motivated by the work of Refs. 142-144, we have developed a formalism to treat

the problem of Penning ionization of an adsorbed atom on a metallic solid surface
145

in the presence of laser radiation. The ionizing agents are taken to be ex-

cited atoms and laser radiation with frequency low compared to the inverse of

characteristic collision times. The laser frequency is also taken to be much less

than characteristic band structure resonances of the pure metallic surface so that

photoemission need not be considered as a competing process. We also require it

to be far from resonance with vibrations or phonons of the adatom-surface system

to exclude laser-induced desorption or migration.

The physical constraints of short collision time and low laser frequency permit

the use of the quasistatic approximation, where the energy of the system is con-

sidered to be adiabatically conserved within the duration of a characteristic

collision time. The short collision time also warrants the use of the impulse

approximation in the treatment of the projectile atom-adatom collision dynamics.

Within this approximation, the collision between the projectile atom (B) and the

adatom-surface (AS) system is assumed to be mediated by a single electron possess-

ing a characteristic momentum and energy distribution determined by virture of its

being part of the AS + field system,and otherwise considered to be free. The time-

dependent differential ionization cross section can then be written as

6 2S-, l2 1 d 3 pd 3Pf (3.23)
d a (t) V 0 L(27,el t TI) 3.3

d6lt t,1t)TEfpfp;Eipipl v 0 (2Tr) 3

The various quantities are explained as follows: S, the time-dependent spectral

function, describes the momentum (pi) and energy (Ci) distribution of an electron
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in the AS + field system. T is an electron-atom scattering matrix element, de-

scribing the collision between a projectile atom B in the initial internal state
2i> with kinetic energy pi/ 2mB and a free electron with momentum p1. to produce B

in the de-excited internal state If> with final kinetic energy pf/2mB and a free

f.felectron with momentum p. E i - E f is the transfer of internal excitation of B,

and v0 is its incident velocity.

The treatment of the problem can thus be separated into two parts: the deter-

mination of an electron spectral function (S) for the AS + field system and the

calculation of an electron-atom T-matrix element. The latter problem has been well

studied by atomic physicists, and we have focused our attention on the former

problem dealing with the AS + field system. The Green's function formalism for

many-body problems provides a natural framework for the computation of S. We shall

not go into the details here, but simply indicate that within the quasistatic

approximation it can be shown that

s pVC;t= lim Im GA ( 1  -in;t , (3.24)

where G is the advanced single-particle Green's function for the AS + field

system. To obtain iA we first calculate the space-time Green's function and take

its Fourier transform to obtain the energy-momentum Green's function G(',P,C;t),

which is related in a straightforward fashion to GA"

Let us now consider the process of ion neutralization, where a positive ion im-

pinges on a surface and picks up an electron to leave as a neutral atom.
1 46'147

it was shown in Sec. 2.B.i that the excitation of electrons from a bulk valence

band to surface states in a semiconductor results in an increased electronic

charge in the surface region. This suggests that the neutralization probability

can be significantly enhanced if the semiconductor surface is electronically ex-

cited, since the impinging ions have easier access to the excited surface electrons

than to the bulk electrons. Little attention so far has been given to dynamical

gas-surface processes where the surface is electronically excited, with some

exceptions such as studies of Auger neutralization148 and certain energy-transfer
82

phenomena. Here we want to look at resonance neutralization of ions at electron-

ically-excited semiconductor surfaces. 49

The electronic wave function of the entire system can be written as-4 -0. 1 -. 0 0
t)) F I n)F r1

j=l
(3.25)

where 0 describes the electronic state of the surface before collision, r. is the

position vector of the i-th electron, X denotes the atomic wave function of the

j-th electron which is picked up by the incoming ion, t is the position vector

LA---1 ~
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of the jth electron measured from the nucleus of the departing atom (I -j- ),

and F denotes the wave function of the remaining (n-i) electrons on the surface.
F

We have ignored electrons that are bound to the incident ion in writing 4I' so

that our approach is most readily applicable to incoming protons, and have ne-

glected contributions from states other than the initial and final states, and

XFOF. We shall assume the position vector R of the incoming ion to be a known

function of time.

Substituting Eq. (3.25) into the Schrodinger equation, we arrive at a set of

coupled differential equations for the coefficients C and CF. Going to a contin-
I F

uum limit such that each electron is now labelled by its energy E instead of j, we

find the neutralization rate r to be given by

r(t) = p(E0)HE0(t) H
E 0(t) (3.26)t FF )F1 ' ;  "(.6

p(E) is the energy distribution of electrons, and its variation with respect to E

is assumed to be slow. E0 = E 0t) is the energy which satisfies the relation
0 0t

HII(t) - HEo~t) = 0 (3.27)

The various time-dependent matrix elements are given as

HE = <XF (E) FIHXF (E) > (3.28)
= I  FF

E EH IF <I HJX F(E) F>, H F <X F(E)4F H¢1I> , (3.29)

where H is the sum of the kinetic and potential energy operators of all n elec-

trons. According to Eq. (3.27), at time t the transfer of a surface electron of

energy E0 to the ion is an energy-conserving process, where H and H 0 represent
0 1 FF

the diabatic potentials correlating to the initial and final states, respectively,

of the projectile. The resonance energy E0 varies from -W at t1 to (-W+Eg) at t2 ,

where W is the work function and the transfer of a surface electron to the incident

ion occurs at a time between t and t2 .1 2 149
We have introduced several approximations to evaluate r(t), such as the

neglect of interaction between electrons on the surface, a one-dimensional treat-
E adE 147

ment of the lattice and a symmetrized form for H IF and H E. This results in a
IF Fl

form for r(t) as
r~) F 2 f2

r(t) r E [z(t)] , (3.30)
0E0 E0

where r0 depends on a variety of quantities such as p(EO ) and W, NE0 is a normal-

ization constant for an electron with energy E0, and fEo is a function of the time-
dependent ion (atom)-surface separation (i.e., distance normal to the surface).

: 4 -
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From an inspection of NE0 it can be shown that the neutralization rate is larger

by a factor of 12K ELI for a surface electron than for a bulk electron, where

is the imaginary part of the crystal momentum and L is the length of the solid.

The physical reason for this is that a surface electron has a greater probability to

be found in the region of the surface (thus a greater normalization constant) and

therefore can be more easily picked up by the incident ion.

A suggested candidate for testing this idea is the He+-Si(lll) system. For

neutralization into He*(2 3S) the asymptotic defect A ranges from -0.07 eV to

-1.17 eV, where the lower number corresponds to the asymptotic difference between
-W

HII and H (the energy is measured relative to the ionization level of the soli,

and the upper number corresponds to the asymptotic difference between H and
-W+Eg
HFF (E z 1.1 eV). As the ion approaches the solid, HII comes into resonance

with -W at tI and with HW+Eg at t2, and the time between t1 and t2 corresponds tHFF
resonance with diabatic potentials correlating with surface states. Single-photon

absorption from a low-power CW HF laser will populate surface states over a third

of the way up the band gap, with a significant increase in the neutralization rate.

D. Partial pressure and surface coverage

In this section,we shall investigate the partial pressure of selectivity-excited

adspecies in a multicomponent system by combining the generalized Langmuir kinetic

theory and the laser rate equation.1 50 We first calculate the total desorption

rate in terms of the laser-induced and thermal-excitation-induced rates and the

steady-state partial pressure produced by the desorption of excited adspecies.

The possible mechanism for laser-stimualted desorption will then be discussed.

Employing the Langmuir equation for the laser-stimulated rate, we may express

the steady-state partial pressure of the desorbed species as follows:
150'15 1

p - (kT + kL)zl-yox/(l-e)y , (3.31)

where z is the number of unoccupied nearest-neighbor sites; x and y are the kinetic

order and occupancy order, e.g., (x,y) - (1,2)and (2,2) are the associative dual-

site and the dissociative dual-site occupancy, respectively; 0 is the fractional

coverage of the selectively-excited adspecies; and kT and kL are the thermally-

induced and laser-induced desorption rates. The thermal desorption rate may be

expressed by an Arrhenius form
1 26'15 1

kT= k0 exp E*/kBT , (3.32)

where k0 is a preexponential factor, kB the Boltzmann factor, Ts the surface

temperature and E d - E - F(e), Ed being an activation energy at low coverage and

F(e) a coverage-dependent correction factor due to the adspecies-adspecies inter-

-- I
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action. The laser-stimulated desorption rate kL may be calculated from the master

equation for the energy population (Eq. (2.49)]. The results show a power law

k a Ip , where I is the laser intensity and p is the power factor !SpS1 as dis-
L d150s-

cussed in a previous section.

In Eq. (3.31) we assumed that the total desorption rate is simply the sum of kT

and kL and ignored the interference between the incoherent thermal excitation and

the coherent laser excitation. A more rigorous treatment including this inter-

ference effect shows that both kT and kL are influenced by changing the temperature

of the laser-heated surface, whereby the adspecies is pumped to higher vibrational

states by the coherent laser field and finally desorbed from the laser-heated

surface via a thermal excitation channel. We note that a previous 1D Morse po-

tential model without these interference effects results in an unrealistically high
14 2laser intensity, Il01 W/cm , for laser desorption. In fact, the intensity re-

quired for desorption should be significantly lower than the above estimate, if

coherent laser excitation pumps the adspecies to some higher vibrational state

with subsequent excitation to the desorption state via laser-induced thermal

phonons. We note that a much lower laser intensity suffices for the initial co-

herent excitation compared to that in the 1D Morse model, where an extremely high

laser intensity is needed to overcome the anharmonicity near the desorption

region. 74 ,10 3 A new model including the aforementioned interference effects and

thereby providing a nonequilibrium total desorption rate takes the form
1 00'15 2

k D(t) - 0dE I WnE(t) P n(t) , (3.33)

D n: n

where P (t) is the probability that the adspecies is in the bound vibrational state
n

In>, given by, e.g., a Poisson function [Eq. (2.77)]. W n(t) is a thermal transi-

tion rate from the bound state In> to the continuum state 1> given by

W n(t) - k0 exp[- (e-En)/kBTs(t)] , (3.34)

where E is the energy of the n-th vibrational state. The laser-induced surface
n 100

temperature can be calculated from a heat diffusion equation
S W(3.35)

v

where T is the laser-induced transient temperature of the system with diffusivity

D and heat capacity Cv, and heat diffuses according to the gradient, , in the

* direction of energy flow; e is a coverage factor defined in Eq. (3.31); W R(T) is a

* temperature-dependent nonequilibrium energy relaxation rate of the pumped adspecies

* via multiphonon processes and can be calculated from the correlation function of
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the active mode-bath mode interaction Hamiltonian HAB [Eq. (2.81b). 10 0

Knowing the total desorption rate k D(t), we may calculate the dynamical partial

pressure of the desorbed species from the desorption rate equation for the
153

coverage,
d 6 (t)-kD ( t) , (3.36)

where n is the desorption order. For first-order kinetics, n-l, the formal

solution of Eqs. (3.33) - (3.36) is readily deduced, with an initial coverage 60 ,

as Jt

6(t) 0 exp dt' 0 k0exp  (.-En)/kBTs(t (3.37)

The above discussion suggests some possible desorption mechanisms: (i) Direct

bond breaking characterized by the laser desorption rate kL if the laser pumping

rate is faster than the intramolecular vibrational relaxation rate (IVR). (ii)In-

direct bond breaking via fast anharmonic IVR where the thermal desorption rate kT

dominates the processes. (iii) Indirect bond breaking via bound-continuum

coupling. Consider, for example, the system CO-Ni in which WCO>>wCNi , and exci-

tation of the CO bond causes rupture of the CNi bond. This process may be re-

ferred to as "autodesorption" in analogy with Fano's "autopredissociation" for a

system governed by configuration coupling.1 54  (iv) Migration-induced reactive

desorption in which the absorption of photon energy causes the adspecies to change

its state from a strongly-bound chemisorbed state to a weakly-bound physisorbed

state. The resulting high mobility may lead to migration-induced desorption via

reactive collisions with other adspecies. This type of desorption can be investi-

gated by combining the migration rate governed by the Hamiltonian in Eq. (2.256)

and the desorption rate given in Eq. (333).53

4. Surface Waves

Surface waves (SW) or surface polaritons have recently received considerable
155-157

attention. For an electromagnetic wave propagating along an interface, the

electric and magnetic fields decay exponentially as one moves away from the inter-

face. The dispersion of the propagation wave vector, assumed to be in the x-

direction, may be expressed as 1

S(mw-L(w) 12kxM_ (4.1)
x c [7&(W) +6 (W)J

where w and c are the frequency and speed of light in air for a metal-air interface

system and E (w) and Em(w) are the dielectric functions. In general, the metal
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has a complex dielectric function, and for SW to exist we require

ReE(W) < - Reg (W) . (4.2)

It is seen that under the above condition, kx () is a complex function whose

imaginary part tells us how fast the SW decays when it propagates along the inter-

face. We note that SW may propagate several centimeters at a wavelength of 10 Um,

since most of the energy in the SW is in the air above the metal.

For a short pulse propagating in a dilute gas medium, the electric field of the

pulse may be described by an optical Bloch equation, neglecting damping rates. 130

This lossless system provides us with a coherent pulse which is area- and shape-

stable in its propagation and has a hyperbolic secant amplitude. Combining this

result from a Bloch equation with a Maxwell equation and imposing the usual bound-

ary condition, we can investigate the propagation of SW along the interface be-

tween a dilute gas medium and a metal. 158 To demonstrate the exponential decay of

SW propagating along the interface, we present amplitude profiles in Fig. 26. It

is seen that SW decays faster in the metal than in the air.

5. Annealing

Laser-matter interactions have interesting applications in materials process-in. 5 9 -1 6 1

ing. 9 Areas such as laser-assisted crystal regrowth and annealing of ion-

implantation damage have provided an economically competitive alternative to

conventional methods. We shall study the fundamental physical phenomena that

i (A)

0

l.L

Fig. 26. Propagation of SW long a metal-air interface at z-0 for (A) strong
damping in the metal with ReE --10 and (B) weak damping with Ream--5 . The
dielectric function for the aTr is ReEgZ-l.b9
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Fig. 27. Temperature profiles for laser-heated tungsten at different depths: z
20 n (A), n=0,5,10,15 and 20 for curves 1 to 5, respectively, Here a Gaussian
pulse has been approximated by an isosceles triangle with FWHM-30 ps and intensity
I -- 5GW/cm2 . 1 6 5

Fig. 28. 3D temperature profiles corresponding to Fig. 27, where the point is
p - (350 ps, 5000 A). 1 6 5

- (NI () (A)

. i

Fig. 29. Temperature profiles for laser-heated aluminum with a temperature-depen-

dent absorptivity for different pulse shapes as defined in Eq. (2.406) for trian-
gular temporal dependence with laser intensity peaked at a and FWHM (ps) - (a+b)/2
for (A) (ab)-(30,30), (B)(a,b)-(55,5) and (C)(a,b)-(5,55). Here a laser peak in-
tensity I - I GW/cM_2 has been used. Curves 1 to 5 are for different depths as
shown in Fig. 27.165 As in Fig. 27, each abscissa ranges from 0 to 160 ps.
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underlie laser material processing in which the laser-generated temperature in-

crease of the material plays an essential role. The absorption of photon energy

occurs primarily through its interaction with electrons which rapidly give up

their energy via collision processes, on a time scale of a picosecond or less.

The absorbed energy is then transformed into lattice phonon energy, i.e., heat.

Within the transient laser heating region, most of the photon energy is deposited

within a range of 1/a, where a is the absorption coefficient, and decreases

monotonically with depth. For metals, typical values-of a are in the range of
4 _ 5 -110 - 10 cm , so that the laser energy (heat) is deposited in a thin layer of

10- 5 - 10 - 4 cm.

Laser annealing can be accomplished by either a CW laser or a pulsed laser and

involves solid-state and liquid-state regrowth of the ion-implanted layers. One

point of view is that pulsed-laser annealing involves heating and melting of the
162

surface, while another suggests nonthermal processes to occur due to the

presence of a dense plasma of free carriers excited by the laser radiation.
163

In the latter case, the electron temperature in the plasma is assumed to be much

higher than the lattice temperature. In this section, we shall present a thermal

model in which a heat diffusion equation 'is solved to obtain the laser-generated

transient temperature of the material. In the previous section, we assumed a

constant absorptivity A l-R to calculate the thermionic current emitted from a

tungsten surface, and only the surface temperature was shown. To demonstrate the

temperature increase of the laser-heated tungsten on the surface and in the bulk,

we solve the heat diffusion equation [Sq. (2.403)] numerically. The results for

the temperature profiles are shown in Fig. 27 for the 2D case and in Fig. 28 for

the 3D case.

In general, most metals have a temperature-dependent absorptivity which can lead

to a positive feedback and thereby a considerable increase in the laser-generated

temperature compared to the case of constant absorptivity. For the case of

aluminum, the absorptivity is 16 4

A a A0 + A1T (5.1)

with A0 - 4.67 x 10-3 and A, - 3.05 x 10-5 /K. The results are shown in Fig. 29 for
2D. 1
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